关注
Lennart Schmidt
标题
引用次数
引用次数
年份
Challenges in applying machine learning models for hydrological inference: A case study for flooding events across Germany
L Schmidt, F Heße, S Attinger, R Kumar
Water resources research 56 (5), e2019WR025924, 2020
1142020
System for automated Quality Control (SaQC) to enable traceable and reproducible data streams in environmental science
L Schmidt, D Schäfer, J Geller, P Lünenschloss, B Palm, K Rinke, ...
Environmental Modelling & Software 169, 105809, 2023
152023
From source to sink-Sustainable and reproducible data pipelines with SaQC
D Schäfer, B Palm, L Schmidt, P Lünenschloß, J Bumberger
EGU General Assembly Conference Abstracts, 19648, 2020
32020
Spatially-distributed Deep Learning for rainfall-runoff modelling and system understanding
L Schmidt, E Gusho, W de Back, K Vinogradova, R Kumar, O Rakovec, ...
EGU General Assembly Conference Abstracts, 20736, 2020
22020
Supervised and unsupervised machine-learning for automated quality control of environmental sensor data
J Polz, L Schmidt, L Glawion, M Graf, C Werner, C Chwala, ...
EGU21, 2021
12021
Interpretable Quality Control of Sparsely Distributed Environmental Sensor Networks Using Graph Neural Networks
E Lasota, T Houben, J Polz, L Schmidt, L Glawion, D Schäfer, ...
Artificial Intelligence for the Earth Systems 4 (1), e240032, 2025
2025
Leveraging the Power of Graph Neural Networks in Environmental Time Series Anomaly Detection
E Lasota, J Polz, T Houben, L Schmidt, D Schäfer, J Bumberger, ...
EGU General Assembly Conference Abstracts, 8410, 2024
2024
SaQC: Empowering Hydrological Data Integrity through Automated Quality Control
D Schäfer, P Lünenschloß, B Palm, L Schmidt, T Schnicke, C Rebmann, ...
EGU24, 2024
2024
Tackling practical challenges in anomaly detection for real-time monitoring of urban waste water networks
L Schmidt, F Weiske, M Schütze, P Grimm, J Polz, J Bumberger
EGU24, 2024
2024
Expert Flagging of Commercial Microwave Link Signal Anomalies: Effect on Rainfall Estimation and Ambiguity of Flagging
J Polz, L Glawion, M Graf, N Blettner, E Lasota, L Schmidt, H Kunstmann, ...
2023 IEEE International Conference on Acoustics, Speech, and Signal …, 2023
2023
Enhancing environmental sensor data quality control with graph neural networks
E Lasota, J Polz, C Chwala, L Schmidt, P Lünenschloß, D Schäfer, ...
EGU General Assembly Conference Abstracts, EGU-9434, 2023
2023
Reproducible quality control of time series data with SaQC
D Schäfer, B Palm, P Lünenschloß, L Schmidt, J Bumberger
EGU General Assembly Conference Abstracts, EGU-12971, 2023
2023
Machine learning-based anomaly detection for real-time monitoring of urban waste water networks
L Schmidt, F Weise, M Schütze, P Grimm, J Polz, J Bumberger
EGU23, 2023
2023
Machine learning based spatio-temporal interpolation of soil moisture in an agricultural catchment
S Khurana, T Houben, P Ebeling, J Schmid, L Schmidt, M Anand, J Boog
AGU Fall Meeting Abstracts 2021, H55C-0775, 2021
2021
A new distributed data analysis framework for better scientific collaborations
PS Sommer, V Wichert, D Eggert, T Dinter, K Getzlaff, A Lehmann, ...
EGU General Assembly Conference Abstracts, EGU21-1614, 2021
2021
On the potential and challenges of using machine-learning for automated quality control of environmental sensor data
L Schmidt, H Mollenhauer, C Rebmann, D Schäfer, A Claussnitzer, ...
EGU General Assembly Conference Abstracts, 20777, 2020
2020
Controls of flood magnitude: A Germany-wide analysis using parametric and non-parametric approaches
L Schmidt
Chair of Hydrology, University of Freiburg, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–17