关注
Mark Niklas Müller
Mark Niklas Müller
PhD Student, ETH Zurich
在 inf.ethz.ch 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
PRIMA: general and precise neural network certification via scalable convex hull approximations
MN Müller, G Makarchuk, G Singh, M Püschel, M Vechev
Proceedings of the ACM on Programming Languages 6 (POPL), 1-33, 2022
128*2022
Complete verification via multi-neuron relaxation guided branch-and-bound
C Ferrari, MN Muller, N Jovanovic, M Vechev
The Tenth International Conference on Learning Representations, 2022 (ICLR'22), 2022
872022
Certified training: Small boxes are all you need
MN Müller, F Eckert, M Fischer, M Vechev
The Eleventh International Conference on Learning Representations (ICLR'23), 2022
592022
First three years of the international verification of neural networks competition (VNN-COMP)
C Brix, MN Müller, S Bak, TT Johnson, C Liu
International Journal on Software Tools for Technology Transfer 25 (3), 329-339, 2023
582023
The third international verification of neural networks competition (VNN-COMP 2022): Summary and results
MN Müller, C Brix, S Bak, C Liu, TT Johnson
arXiv preprint arXiv:2212.10376, 2022
562022
Boosting randomized smoothing with variance reduced classifiers
MZ Horváth, MN Müller, M Fischer, M Vechev
The Tenth International Conference on Learning Representations, 2022 (ICLR'22), 2021
432021
Taps: Connecting certified and adversarial training
Y Mao, MN Müller, M Fischer, M Vechev
Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS'23), 2023
14*2023
Certify or predict: Boosting certified robustness with compositional architectures
MN Müller, M Balunović, M Vechev
The Ninth International Conference on Learning Representations, 2021 (ICLR'21), 2021
142021
Robust and Accurate--Compositional Architectures for Randomized Smoothing
MZ Horváth, MN Müller, M Fischer, M Vechev
arXiv preprint arXiv:2204.00487, 2022
122022
Abstract interpretation of fixpoint iterators with applications to neural networks
MN Müller, M Fischer, R Staab, M Vechev
Proceedings of the ACM on Programming Languages 7 (PLDI), 786-810, 2023
10*2023
Evading data contamination detection for language models is (too) easy
J Dekoninck, MN Müller, M Baader, M Fischer, M Vechev
arXiv preprint arXiv:2402.02823, 2024
82024
Understanding certified training with interval bound propagation
Y Mao, MN Müller, M Fischer, M Vechev
arXiv preprint arXiv:2306.10426, 2023
62023
Expressivity of ReLU-Networks under Convex Relaxations
M Baader, MN Müller, Y Mao, M Vechev
arXiv preprint arXiv:2311.04015, 2023
42023
Automated Classification of Model Errors on ImageNet
M Peychev, MN Mueller, M Fischer, M Vechev
Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS'23), 2023
32023
Efficient Certified Training and Robustness Verification of Neural ODEs
M Zeqiri, MN Müller, M Fischer, M Vechev
The Eleventh International Conference on Learning Representations (ICLR'23), 2023
3*2023
Spear: Exact gradient inversion of batches in federated learning
DI Dimitrov, M Baader, MN Müller, M Vechev
arXiv preprint arXiv:2403.03945, 2024
22024
Certified Robustness to Data Poisoning in Gradient-Based Training
P Sosnin, MN Müller, M Baader, C Tsay, M Wicker
arXiv preprint arXiv:2406.05670, 2024
12024
Overcoming the Paradox of Certified Training with Gaussian Smoothing
S Balauca, MN Müller, Y Mao, M Baader, M Fischer, M Vechev
arXiv preprint arXiv:2403.07095, 2024
12024
Prompt Sketching for Large Language Models
L Beurer-Kellner, MN Müller, M Fischer, M Vechev
arXiv preprint arXiv:2311.04954, 2023
12023
(De-) Randomized Smoothing for Decision Stump Ensembles
M Horváth, M Müller, M Fischer, M Vechev
Advances in Neural Information Processing Systems 35, 3066-3081, 2022
12022
系统目前无法执行此操作,请稍后再试。
文章 1–20