A guide to deep learning in healthcare A Esteva, A Robicquet, B Ramsundar, V Kuleshov, M DePristo, K Chou, ... Nature medicine 25 (1), 24-29, 2019 | 2941 | 2019 |
Accurate uncertainties for deep learning using calibrated regression V Kuleshov, N Fenner, S Ermon International conference on machine learning, 2796-2804, 2018 | 643 | 2018 |
Algorithms for multi-armed bandit problems V Kuleshov, D Precup arXiv preprint arXiv:1402.6028, 2014 | 548 | 2014 |
Whole-genome haplotyping using long reads and statistical methods V Kuleshov, D Xie, R Chen, D Pushkarev, Z Ma, T Blauwkamp, M Kertesz, ... Nature biotechnology 32 (3), 261-266, 2014 | 224 | 2014 |
Audio super resolution using neural networks V Kuleshov, SZ Enam, S Ermon arXiv preprint arXiv:1708.00853, 2017 | 218* | 2017 |
Calibrated structured prediction V Kuleshov, PS Liang Advances in Neural Information Processing Systems 28, 2015 | 129 | 2015 |
Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome V Kuleshov, C Jiang, W Zhou, F Jahanbani, S Batzoglou, M Snyder Nature biotechnology 34 (1), 64-69, 2016 | 119 | 2016 |
Tensor factorization via matrix factorization V Kuleshov, A Chaganty, P Liang Artificial Intelligence and Statistics, 507-516, 2015 | 98 | 2015 |
Adversarial examples for natural language classification problems V Kuleshov, S Thakoor, T Lau, S Ermon | 94 | 2018 |
Probabilistic single-individual haplotyping V Kuleshov Bioinformatics 30 (17), i379-i385, 2014 | 70 | 2014 |
Calibrated model-based deep reinforcement learning A Malik, V Kuleshov, J Song, D Nemer, H Seymour, S Ermon International Conference on Machine Learning, 4314-4323, 2019 | 56 | 2019 |
Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations. S Birnbaum, V Kuleshov, Z Enam, PW Koh, S Ermon Advances in Neural Information Processing Systems 32, 2019 | 55 | 2019 |
Inverse game theory: Learning utilities in succinct games V Kuleshov, O Schrijvers Web and Internet Economics: 11th International Conference, WINE 2015 …, 2015 | 55 | 2015 |
Quip: 2-bit quantization of large language models with guarantees J Chee, Y Cai, V Kuleshov, CM De Sa Advances in Neural Information Processing Systems 36, 2024 | 50 | 2024 |
Estimating uncertainty online against an adversary V Kuleshov, S Ermon Proceedings of the AAAI Conference on Artificial Intelligence 31 (1), 2017 | 45* | 2017 |
Neural variational inference and learning in undirected graphical models V Kuleshov, S Ermon Advances in Neural Information Processing Systems 30, 2017 | 43 | 2017 |
Genome assembly from synthetic long read clouds V Kuleshov, MP Snyder, S Batzoglou Bioinformatics 32 (12), i216-i224, 2016 | 42 | 2016 |
A machine-compiled database of genome-wide association studies V Kuleshov, J Ding, C Vo, B Hancock, A Ratner, Y Li, C Ré, S Batzoglou, ... Nature communications 10 (1), 3341, 2019 | 38 | 2019 |
Harnessing biomedical literature to calibrate clinicians’ trust in AI decision support systems Q Yang, Y Hao, K Quan, S Yang, Y Zhao, V Kuleshov, F Wang Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems …, 2023 | 37 | 2023 |
Deep hybrid models: Bridging discriminative and generative approaches V Kuleshov, S Ermon Proceedings of the Conference on Uncertainty in AI (UAI), 2017 | 36 | 2017 |