Inferring the origin of an epidemic with a dynamic message-passing algorithm AY Lokhov, M Mézard, H Ohta, L Zdeborová Physical Review E 90 (1), 012801, 2014 | 348 | 2014 |
Quantum algorithm implementations for beginners A Adedoyin, J Ambrosiano, P Anisimov, W Casper, G Chennupati, ... arXiv preprint arXiv:1804.03719, 2018 | 162 | 2018 |
Quantum algorithm implementations for beginners PJ Coles, S Eidenbenz, S Pakin, A Adedoyin, J Ambrosiano, P Anisimov, ... arXiv, arXiv: 1804.03719, 2018 | 143 | 2018 |
Interaction screening: Efficient and sample-optimal learning of Ising models M Vuffray, S Misra, A Lokhov, M Chertkov Advances in neural information processing systems 29, 2016 | 132 | 2016 |
Discovering a transferable charge assignment model using machine learning AE Sifain, N Lubbers, BT Nebgen, JS Smith, AY Lokhov, O Isayev, ... The journal of physical chemistry letters 9 (16), 4495-4501, 2018 | 123 | 2018 |
Transferable dynamic molecular charge assignment using deep neural networks B Nebgen, N Lubbers, JS Smith, AE Sifain, A Lokhov, O Isayev, ... Journal of chemical theory and computation 14 (9), 4687-4698, 2018 | 109 | 2018 |
Optimal structure and parameter learning of Ising models AY Lokhov, M Vuffray, S Misra, M Chertkov Science advances 4 (3), e1700791, 2018 | 99 | 2018 |
Dynamic message-passing equations for models with unidirectional dynamics AY Lokhov, M Mézard, L Zdeborová Physical Review E 91 (1), 012811, 2015 | 74 | 2015 |
Optimal deployment of resources for maximizing impact in spreading processes AY Lokhov, D Saad Proceedings of the National Academy of Sciences 114 (39), E8138-E8146, 2017 | 72 | 2017 |
Reconstructing parameters of spreading models from partial observations AY Lokhov Advances in Neural Information Processing Systems, 3467–3475, 2016 | 40 | 2016 |
Efficient Learning of Discrete Graphical Models M Vuffray, S Misra, A Lokhov Advances in Neural Information Processing Systems 33, 13575-13585, 2020 | 39 | 2020 |
Real-time anomaly detection and classification in streaming PMU data C Hannon, D Deka, D Jin, M Vuffray, AY Lokhov 2021 IEEE Madrid PowerTech, 1-6, 2021 | 29 | 2021 |
Information theoretic optimal learning of gaussian graphical models S Misra, M Vuffray, AY Lokhov Conference on Learning Theory, 2888-2909, 2020 | 28* | 2020 |
On the emerging potential of quantum annealing hardware for combinatorial optimization B Tasseff, T Albash, Z Morrell, M Vuffray, AY Lokhov, S Misra, C Coffrin arXiv preprint arXiv:2210.04291, 2022 | 26 | 2022 |
Online learning of power transmission dynamics AY Lokhov, M Vuffray, D Shemetov, D Deka, M Chertkov 2018 Power Systems Computation Conference (PSCC), 1-7, 2018 | 24 | 2018 |
Competition, collaboration, and optimization in multiple interacting spreading processes H Sun, D Saad, AY Lokhov Physical Review X 11 (1), 011048, 2021 | 21 | 2021 |
High-quality thermal Gibbs sampling with quantum annealing hardware J Nelson, M Vuffray, AY Lokhov, T Albash, C Coffrin Physical Review Applied 17 (4), 044046, 2022 | 19 | 2022 |
The potential of quantum annealing for rapid solution structure identification Y Pang, C Coffrin, AY Lokhov, M Vuffray Constraints 26 (1), 1-25, 2021 | 18 | 2021 |
Programmable quantum annealers as noisy gibbs samplers M Vuffray, C Coffrin, YA Kharkov, AY Lokhov PRX Quantum 3 (2), 020317, 2022 | 17 | 2022 |
Prediction-centric learning of independent cascade dynamics from partial observations M Wilinski, A Lokhov International Conference on Machine Learning, 11182-11192, 2021 | 17* | 2021 |