关注
Joschka Winz
Joschka Winz
PhD student, Process Dynamics and Operations Group, Department of Biochemical and Chemical
在 tu-dortmund.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A hybrid dynamic model for the prediction of molten iron and slag quality indices of a large-scale blast furnace
P Azadi, J Winz, E Leo, R Klock, S Engell
Computers & Chemical Engineering 156, 107573, 2022
332022
Surrogate modeling of fugacity coefficients using adaptive sampling
C Nentwich, J Winz, S Engell
Industrial & Engineering Chemistry Research 58 (40), 18703-18716, 2019
232019
Development of a Dynamic Gray‐Box Model of a Fermentation Process for Spore Production
J Winz, S Assawajaruwan, S Engell
Chemie Ingenieur Technik 95 (7), 1154-1164, 2023
62023
Reliable nonlinear dynamic gray-box modeling by regularized training data estimation and sensitivity analysis
J Winz, S Engell
IFAC-PapersOnLine 55 (7), 86-93, 2022
52022
Optimization based sampling for gray-box modeling using a modified upper confidence bound acquisition function
J Winz, S Engell
Computer Aided Chemical Engineering 50, 953-958, 2021
52021
Surrogate Modeling of Thermodynamic Equilibria: Applications, Sampling and Optimization
J Winz, C Nentwich, S Engell
Chemie Ingenieur Technik 93 (12), 1898-1906, 2021
22021
A methodology for gray-box modeling of nonlinear ODE systems
J Winz, S Engell
Computer Aided Chemical Engineering 51, 1483-1488, 2022
12022
Data-efficient surrogate modeling of thermodynamic equilibria using Sobolev training, data augmentation and adaptive sampling
J Winz, S Engell
Chemical Engineering Science, 120461, 2024
2024
Overcoming the modeling bottleneck: A methodology for dynamic gray-box modeling with optimized training data
J Winz, F Fromme, S Engell
Journal of Process Control 130, 103089, 2023
2023
Supporting Hyperparameter Optimization in Adaptive Sampling Methods
J Winz, F Fromme, S Engell
Computer Aided Chemical Engineering 49, 835-840, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–10