Self-Attention with Relative Position Representations P Shaw, J Uszkoreit, A Vaswani arXiv preprint arXiv:1803.02155, 2018 | 2443 | 2018 |
Compositional Generalization and Natural Language Variation: Can a Semantic Parsing Approach Handle Both? P Shaw, MW Chang, P Pasupat, K Toutanova arXiv preprint arXiv:2010.12725, 2020 | 167 | 2020 |
Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding K Lee, M Joshi, I Turc, H Hu, F Liu, J Eisenschlos, U Khandelwal, P Shaw, ... arXiv preprint arXiv:2210.03347, 2022 | 136 | 2022 |
Exploring Unexplored Generalization Challenges for Cross-Database Semantic Parsing A Suhr, MW Chang, P Shaw, K Lee Proceedings of the 58th Annual Meeting of the Association for Computational …, 2020 | 73 | 2020 |
Improving Compositional Generalization with Latent Structure and Data Augmentation L Qiu, P Shaw, P Pasupat, PK Nowak, T Linzen, F Sha, K Toutanova arXiv preprint arXiv:2112.07610, 2021 | 64 | 2021 |
Unlocking Compositional Generalization in Pre-trained Models Using Intermediate Representations J Herzig, P Shaw, MW Chang, K Guu, P Pasupat, Y Zhang arXiv preprint arXiv:2104.07478, 2021 | 63 | 2021 |
Evaluating the Impact of Model Scale for Compositional Generalization in Semantic Parsing L Qiu, P Shaw, P Pasupat, T Shi, J Herzig, E Pitler, F Sha, K Toutanova arXiv preprint arXiv:2205.12253, 2022 | 48 | 2022 |
Generating Logical Forms from Graph Representations of Text and Entities P Shaw, P Massey, A Chen, F Piccinno, Y Altun arXiv preprint arXiv:1905.08407, 2019 | 42 | 2019 |
From Pixels to UI Actions: Learning to Follow Instructions via Graphical User Interfaces P Shaw, M Joshi, J Cohan, J Berant, P Pasupat, H Hu, U Khandelwal, ... arXiv preprint arXiv:2306.00245, 2023 | 37 | 2023 |
Answering Conversational Questions on Structured Data without Logical Forms T Müller, F Piccinno, M Nicosia, P Shaw, Y Altun arXiv preprint arXiv:1908.11787, 2019 | 37 | 2019 |
Systematic Generalization on gSCAN: What is Nearly Solved and What is Next? L Qiu, H Hu, B Zhang, P Shaw, F Sha arXiv preprint arXiv:2109.12243, 2021 | 18 | 2021 |
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking J Eisenstein, C Nagpal, A Agarwal, A Beirami, A D'Amour, DJ Dvijotham, ... arXiv preprint arXiv:2312.09244, 2023 | 17 | 2023 |
Generate-and-Retrieve: use your predictions to improve retrieval for semantic parsing Y Zemlyanskiy, M de Jong, J Ainslie, P Pasupat, P Shaw, L Qiu, ... arXiv preprint arXiv:2209.14899, 2022 | 11 | 2022 |
QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations C Malaviya, P Shaw, MW Chang, K Lee, K Toutanova arXiv preprint arXiv:2305.11694, 2023 | 8 | 2023 |
Learning to Generalize Compositionally by Transferring Across Semantic Parsing Tasks W Zhu, P Shaw, T Linzen, F Sha arXiv preprint arXiv:2111.05013, 2021 | 7 | 2021 |
Visually Grounded Concept Composition B Zhang, H Hu, L Qiu, P Shaw, F Sha arXiv preprint arXiv:2109.14115, 2021 | 5 | 2021 |
Robust Preference Optimization through Reward Model Distillation A Fisch, J Eisenstein, V Zayats, A Agarwal, A Beirami, C Nagpal, P Shaw, ... arXiv preprint arXiv:2405.19316, 2024 | 3 | 2024 |
Graph-Based Decoding for Task Oriented Semantic Parsing JR Cole, N Jiang, P Pasupat, L He, P Shaw arXiv preprint arXiv:2109.04587, 2021 | 2 | 2021 |
BAGEL: Bootstrapping Agents by Guiding Exploration with Language S Murty, C Manning, P Shaw, M Joshi, K Lee arXiv preprint arXiv:2403.08140, 2024 | | 2024 |
ProtEx: A Retrieval-Augmented Approach for Protein Function Prediction P Shaw, B Gurram, D Belanger, A Gane, ML Bileschi, LJ Colwell, ... bioRxiv, 2024.05. 30.596539, 2024 | | 2024 |