Discriminative embeddings of latent variable models for structured data H Dai, B Dai, L Song International conference on machine learning, 2702-2711, 2016 | 821 | 2016 |
Syntax-directed variational autoencoder for structured data H Dai, Y Tian, B Dai, S Skiena, L Song arXiv preprint arXiv:1802.08786, 2018 | 432* | 2018 |
DualDICE: Behavior-agnostic estimation of discounted stationary distribution corrections O Nachum, Y Chow, B Dai, L Li Advances in Neural Information Processing Systems, 2315-2325, 2019 | 333 | 2019 |
SBEED: Convergent reinforcement learning with nonlinear function approximation B Dai, A Shaw, L Li, L Xiao, N He, Z Liu, J Chen, L Song International conference on machine learning, 1125-1134, 2018 | 293 | 2018 |
Scalable kernel methods via doubly stochastic gradients B Dai, B Xie, N He, Y Liang, A Raj, MFF Balcan, L Song Advances in neural information processing systems 27, 2014 | 256 | 2014 |
Learning steady-states of iterative algorithms over graphs H Dai, Z Kozareva, B Dai, A Smola, L Song International conference on machine learning, 1106-1114, 2018 | 244 | 2018 |
AlgaeDICE: Policy gradient from arbitrary experience O Nachum, B Dai, I Kostrikov, Y Chow, L Li, D Schuurmans arXiv preprint arXiv:1912.02074, 2019 | 235 | 2019 |
Retrosynthesis prediction with conditional graph logic network H Dai, C Li, C Coley, B Dai, L Song Advances in Neural Information Processing Systems 32, 2019 | 188 | 2019 |
GenDICE: Generalized Offline Estimation of Stationary Values R Zhang, B Dai, L Li, D Schuurmans International Conference on Learning Representations, 2020 | 181 | 2020 |
Iterative machine teaching W Liu, B Dai, A Humayun, C Tay, C Yu, LB Smith, JM Rehg, L Song International Conference on Machine Learning, 2149-2158, 2017 | 163 | 2017 |
Learning from Conditional Distributions via Dual Embeddings B Dai, N He, Y Pan, B Boots, L Song arXiv preprint arXiv:1607.04579, 2016 | 159 | 2016 |
Learning towards minimum hyperspherical energy W Liu, R Lin, Z Liu, L Liu, Z Yu, B Dai, L Song Advances in neural information processing systems 31, 2018 | 152 | 2018 |
Deep hyperspherical learning W Liu, YM Zhang, X Li, Z Yu, B Dai, T Zhao, L Song Advances in neural information processing systems 30, 2017 | 147 | 2017 |
Stochastic generative hashing B Dai, R Guo, S Kumar, N He, L Song International Conference on Machine Learning, 913-922, 2017 | 133 | 2017 |
Off-Policy Evaluation via the Regularized Lagrangian M Yang, O Nachum, B Dai, L Li, D Schuurmans arXiv preprint arXiv:2007.03438, 2020 | 107 | 2020 |
Differentiable top-k with optimal transport Y Xie, H Dai, M Chen, B Dai, T Zhao, H Zha, W Wei, T Pfister Advances in Neural Information Processing Systems 33, 20520-20531, 2020 | 106 | 2020 |
Information-theoretic semi-supervised metric learning via entropy regularization G Niu, B Dai, M Yamada, M Sugiyama Neural computation 26 (8), 1717-1762, 2014 | 106 | 2014 |
Reinforcement learning via fenchel-rockafellar duality O Nachum, B Dai arXiv preprint arXiv:2001.01866, 2020 | 99 | 2020 |
Learning universal policies via text-guided video generation Y Du, S Yang, B Dai, H Dai, O Nachum, J Tenenbaum, D Schuurmans, ... Advances in Neural Information Processing Systems 36, 2023 | 93 | 2023 |
CoinDICE: Off-policy confidence interval estimation B Dai, O Nachum, Y Chow, L Li, C Szepesvári, D Schuurmans arXiv preprint arXiv:2010.11652, 2020 | 84 | 2020 |