ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms M Aumüller, E Bernhardsson, A Faithfull Information Systems 87, 101374, 2020 | 237 | 2020 |
Ann-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms M Aumüller, E Bernhardsson, A Faithfull International conference on similarity search and applications, 34-49, 2017 | 137 | 2017 |
Explicit and efficient hash families suffice for cuckoo hashing with a stash M Aumüller, M Dietzfelbinger, P Woelfel Algorithmica 70 (3), 428-456, 2014 | 52 | 2014 |
Optimal partitioning for dual-pivot quicksort M Aumüller, M Dietzfelbinger ACM Transactions on Algorithms (TALG) 12 (2), 1-36, 2015 | 48 | 2015 |
Parameter-free locality sensitive hashing for spherical range reporting TD Ahle, M Aumüller, R Pagh Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete …, 2017 | 44 | 2017 |
Results of the NeurIPS'21 Challenge on Billion-Scale Approximate Nearest Neighbor Search H Vardhan Simhadri, G Williams, M Aumüller, M Douze, A Babenko, ... arXiv e-prints, arXiv: 2205.03763, 2022 | 38* | 2022 |
Distance-sensitive hashing M Aumüller, T Christiani, R Pagh, F Silvestri Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of …, 2018 | 30 | 2018 |
PUFFINN: parameterless and universally fast finding of nearest neighbors M Aumüller, T Christiani, R Pagh, M Vesterli arXiv preprint arXiv:1906.12211, 2019 | 28 | 2019 |
The role of local dimensionality measures in benchmarking nearest neighbor search M Aumüller, M Ceccarello Information Systems 101, 101807, 2021 | 27* | 2021 |
How good is multi-pivot quicksort? M Aumüller, M Dietzfelbinger, P Klaue ACM Transactions on Algorithms (TALG) 13 (1), 1-47, 2016 | 26 | 2016 |
Fair near neighbor search: Independent range sampling in high dimensions M Aumüller, R Pagh, F Silvestri Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of …, 2020 | 20 | 2020 |
Fair near neighbor search via sampling M Aumuller, S Har-Peled, S Mahabadi, R Pagh, F Silvestri ACM SIGMOD Record 50 (1), 42-49, 2021 | 19 | 2021 |
Experimental variations of a theoretically good retrieval data structure M Aumüller, M Dietzfelbinger, M Rink Algorithms-ESA 2009: 17th Annual European Symposium, Copenhagen, Denmark …, 2009 | 16 | 2009 |
Representing sparse vectors with differential privacy, low error, optimal space, and fast access M Aumüller, CJ Lebeda, R Pagh Journal of Privacy and Confidentiality 12 (2), 2022 | 12* | 2022 |
Sampling a Near Neighbor in High Dimensions—Who is the Fairest of Them All? M Aumüller, S Har-Peled, S Mahabadi, R Pagh, F Silvestri ACM Transactions on Database Systems (TODS) 47 (1), 1-40, 2022 | 11 | 2022 |
Overview of the SISAP 2023 Indexing Challenge ES Tellez, M Aumüller, E Chavez International Conference on Similarity Search and Applications, 255-264, 2023 | 10 | 2023 |
Dual-pivot quicksort: Optimality, analysis and zeros of associated lattice paths M Aumüller, M Dietzfelbinger, C Heuberger, D Krenn, H Prodinger Combinatorics, Probability and Computing 28 (4), 485-518, 2019 | 10* | 2019 |
Differentially private sketches for Jaccard similarity estimation M Aumüller, A Bourgeat, J Schmurr Similarity Search and Applications: 13th International Conference, SISAP …, 2020 | 9 | 2020 |
Benchmarking nearest neighbors E Bernhardsson, M Aumüller, A Faithfull | 9 | 2018 |
Deann: Speeding up kernel-density estimation using approximate nearest neighbor search M Karppa, M Aumüller, R Pagh International Conference on Artificial Intelligence and Statistics, 3108-3137, 2022 | 7 | 2022 |