关注
Shanshan Wang
标题
引用次数
引用次数
年份
An effective intrusion detection framework based on SVM with feature augmentation
H Wang, J Gu, S Wang
Knowledge-Based Systems 136, 130-139, 2017
2962017
A novel approach to intrusion detection using SVM ensemble with feature augmentation
SW Jie Gu,Lihong Wang, Huiwen Wang
Computers & Security 86, 53-62, 2019
1762019
Semiparametric regression analysis of clustered survival data with semi-competing risks
M Peng, L Xiang, S Wang
Computational Statistics & Data Analysis 124, 53-70, 2018
532018
The STIRPAT analysis on carbon emission in Chinese cities: An asymmetric laplace distribution mixture model
S Wang, T Zhao, H Zheng, J Hu
Sustainability 9 (12), 2237, 2017
452017
Statistical regression modeling for energy consumption in wastewater treatment
Y Yu, Z Zou, S Wang
Journal of Environmental Sciences 75, 201-208, 2019
422019
Examining Determinants of CO2 Emissions in 73 Cities in China
H Zheng, J Hu, R Guan, S Wang
Sustainability 8 (12), 1296, 2016
422016
Examining the influencing factors of CO2 emissions at city level via panel quantile regression: evidence from 102 Chinese cities
HW Haitao Zheng, Jie Hu, Shanshan Wang
Applied Economics 51 (35), 3906-3919, 2019
362019
A robust spatial autoregressive scalar-on-function regression with t-distribution
T Huang, G Saporta, H Wang, S Wang
Advances in Data Analysis and Classification 15, 57-81, 2021
21*2021
Tracking and forecasting milepost moments of the epidemic in the early-outbreak: framework and applications to the COVID-19
H Wang, Y Zhang, S Lu, S Wang
F1000Research 9, 2020
192020
Interval-valued data regression using partial linear model
Y Wei, S Wang, H Wang
Journal of Statistical Computation and Simulation 87 (16), 3175-3194, 2017
162017
Spatial partial least squares autoregression: Algorithm and applications
H Wang, J Gu, S Wang, G Saporta
Chemometrics and Intelligent Laboratory Systems 184, 123-131, 2019
152019
Functional variable selection via Gram–Schmidt orthogonalization for multiple functional linear regression
R Liu, H Wang, S Wang
Journal of statistical computation and simulation 88 (18), 3664-3680, 2018
122018
Penalized empirical likelihood inference for sparse additive hazards regression with a diverging number of covariates
S Wang, L Xiang
Statistics and Computing 27, 1347-1364, 2017
112017
Convex clustering method for compositional data via sparse group lasso
X Wang, H Wang, S Wang, J Yuan
Neurocomputing 425, 23-36, 2021
102021
Forecasting open-high-low-close data contained in candlestick chart
H Wang, W Huang, S Wang
arXiv preprint arXiv:2104.00581, 2021
92021
Linear mixed-effects model for multivariate longitudinal compositional data
Z Wang, H Wang, S Wang
Neurocomputing 335, 48-58, 2019
82019
A pseudo principal component analysis method for multi-dimensional open-high-low-close data in candlestick chart
W Huang, H Wang, S Wang
Communications in Statistics-Theory and Methods 53 (10), 3472-3498, 2024
72024
Robust regression for interval-valued data based on midpoints and log-ranges
Q Zhao, H Wang, S Wang
Advances in Data Analysis and Classification 17 (3), 583-621, 2023
72023
Sliced inverse regression method for multivariate compositional data modeling
H Wang, Z Wang, S Wang
Statistical Papers 62, 361-393, 2021
72021
Linear mixed-effects model for longitudinal complex data with diversified characteristics
Z Wang, H Wang, S Wang, S Lu, G Saporta
Journal of Management Science and Engineering 5 (2), 105-124, 2020
72020
系统目前无法执行此操作,请稍后再试。
文章 1–20