关注
Hamed H. Aghdam
Hamed H. Aghdam
在 urv.cat 的电子邮件经过验证
标题
引用次数
引用次数
年份
Guide to convolutional neural networks
HH Aghdam, EJ Heravi
New York, NY: Springer 10 (978-973), 51, 2017
5172017
Active learning for deep detection neural networks
HH Aghdam, A Gonzalez-Garcia, J Weijer, AM López
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1642019
A practical approach for detection and classification of traffic signs using convolutional neural networks
HH Aghdam, EJ Heravi, D Puig
Robotics and autonomous systems 84, 97-112, 2016
1252016
Convolutional neural networks
H Habibi Aghdam, E Jahani Heravi, H Habibi Aghdam, E Jahani Heravi
Guide to Convolutional Neural Networks: A Practical Application to Traffic …, 2017
562017
Temporal coherence for active learning in videos
J Zolfaghari Bengar, A Gonzalez-Garcia, G Villalonga, B Raducanu, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
552019
A modified simulated annealing algorithm for static task scheduling in grid computing
AAP Kazem, AM Rahmani, HH Aghdam
2008 International Conference on Computer Science and Information Technology …, 2008
452008
An optimized convolutional neural network with bottleneck and spatial pyramid pooling layers for classification of foods
EJ Heravi, HH Aghdam, D Puig
Pattern Recognition Letters 105, 50-58, 2018
432018
A Practical and Highly Optimized Convolutional Neural Network for Classifying Traffic Signs in Real-Time
HH Aghdam, EJ Heravi, D Puig
International Journal of Computer Vision (IJCV), 1-24, 2016
362016
Classification of foods using spatial pyramid convolutional neural network
EJ Heravi, HH Aghdam, D Puig
Artificial Intelligence Research and Development, 163-168, 2016
332016
Convolutional neural networks
FD ACHMAD, BN Prastowo
Technology 3 (15), 155-160, 2014
292014
Recognizing traffic signs using a practical deep neural network
HH Aghdam, EJ Heravi, D Puig
Robot 2015: Second Iberian Robotics Conference: Advances in Robotics, Volume …, 2015
262015
Guide to convolutional neural networks: a practical application to traffic-sign detection and classification
EJ Heravi, HH Aghdam
Springer, Berlin, 2017
242017
A probabilistic approach for breast boundary extraction in mammograms
H Habibi Aghdam, D Puig, A Solanas
Computational and Mathematical Methods in Medicine 2013 (1), 408595, 2013
172013
Analyzing the Stability of Convolutional Neural Networks against Image Degradation.
HH Aghdam, EJ Heravi, D Puig
VISIGRAPP (4: VISAPP), 370-382, 2016
142016
Weijer, J. vd; and López, AM 2019. Active learning for deep detection neural networks
HH Aghdam, A Gonzalez-Garcia
Proceedings of the IEEE/CVF international conference on computer vision …, 0
12
Springer: New York
HH Aghdam, EJ Heravi
NY, USA 10, 51, 2017
112017
Rad: Realtime and accurate 3d object detection on embedded systems
HH Aghdam, EJ Heravi, SS Demilew, R Laganiere
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
102021
Classification of foods by transferring knowledge from ImageNet dataset
EJ Heravi, HH Aghdam, D Puig
Ninth International Conference on Machine Vision (ICMV 2016) 10341, 441-445, 2017
102017
A unified framework for coarse-to-fine recognition of traffic signs using bayesian network and visual attributes
HH Aghdam, EJ Heravi, D Puig
International Conference on Computer Vision Theory and Applications 2, 87-96, 2015
102015
Toward an optimal convolutional neural network for traffic sign recognition
HH Aghdam, EJ Heravi, D Puig
Eighth International Conference on Machine Vision (ICMV 2015) 9875, 108-112, 2015
82015
系统目前无法执行此操作,请稍后再试。
文章 1–20