关注
Wenlong Ji
Wenlong Ji
在 stanford.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
An unconstrained layer-peeled perspective on neural collapse
W Ji, Y Lu, Y Zhang, Z Deng, WJ Su
arXiv preprint arXiv:2110.02796, 2021
632021
The power of contrast for feature learning: A theoretical analysis
W Ji, Z Deng, R Nakada, J Zou, L Zhang
Journal of Machine Learning Research 24 (330), 1-78, 2023
312023
Understanding multimodal contrastive learning and incorporating unpaired data
R Nakada, HI Gulluk, Z Deng, W Ji, J Zou, L Zhang
International Conference on Artificial Intelligence and Statistics, 4348-4380, 2023
192023
Mapping the increasing use of llms in scientific papers
W Liang, Y Zhang, Z Wu, H Lepp, W Ji, X Zhao, H Cao, S Liu, S He, ...
arXiv preprint arXiv:2404.01268, 2024
102024
Importance tempering: Group robustness for overparameterized models
Y Lu, W Ji, Z Izzo, L Ying
arXiv preprint arXiv:2209.08745, 2022
52022
Model-agnostic covariate-assisted inference on partially identified causal effects
W Ji, L Lei, A Spector
arXiv preprint arXiv:2310.08115, 2023
22023
Scaling Laws for the Value of Individual Data Points in Machine Learning
I Covert, W Ji, T Hashimoto, J Zou
arXiv preprint arXiv:2405.20456, 2024
2024
How Gradient Descent Separates Data with Neural Collapse: A Layer-Peeled Perspective
W Ji, Y Lu, Y Zhang, Z Deng, WJ Su
系统目前无法执行此操作,请稍后再试。
文章 1–8