Stability regions for fractional differential systems with a time delay J Čermák, J Horníček, T Kisela Communications in Nonlinear Science and Numerical Simulation 31 (1-3), 108-123, 2016 | 79 | 2016 |
Zlomkové diferenciální rovnice a jejich aplikace T Kisela Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008 | 58* | 2008 |
Discrete Mittag‐Leffler functions in linear fractional difference equations J Čermák, T Kisela, L Nechvátal Abstract and Applied Analysis 2011 (1), 565067, 2011 | 54 | 2011 |
Fractional differential equations with a constant delay: Stability and asymptotics of solutions J Čermák, Z Došlá, T Kisela Applied Mathematics and Computation 298, 336-350, 2017 | 52 | 2017 |
Stability regions for linear fractional differential systems and their discretizations J Čermák, T Kisela, L Nechvátal Applied Mathematics and Computation 219 (12), 7012-7022, 2013 | 52 | 2013 |
Stability and asymptotic properties of a linear fractional difference equation J Čermák, T Kisela, L Nechvátal Advances in Difference Equations 2012, 1-14, 2012 | 47 | 2012 |
Stability properties of two-term fractional differential equations J Čermák, T Kisela Nonlinear Dynamics 80, 1673-1684, 2015 | 39 | 2015 |
Existence of positive periodic solutions of some nonlinear fractional differential equations A Cabada, T Kisela Communications in Nonlinear Science and Numerical Simulation 50, 51-67, 2017 | 34 | 2017 |
Exact and discretized stability of the Bagley–Torvik equation J Čermák, T Kisela Journal of computational and applied mathematics 269, 53-67, 2014 | 24 | 2014 |
Asymptotic stability of dynamic equations with two fractional terms: continuous versus discrete case J Čermák, T Kisela Fractional Calculus and Applied Analysis 18 (2), 437-458, 2015 | 18 | 2015 |
Stabilization and destabilization of fractional oscillators via a delayed feedback control J Čermák, T Kisela Communications in Nonlinear Science and Numerical Simulation 117, 106960, 2023 | 15 | 2023 |
Power functions and essentials of fractional calculus on isolated time scales T Kisela Advances in Difference Equations 2013, 1-18, 2013 | 14 | 2013 |
Delay-dependent stability switches in fractional differential equations J Čermák, T Kisela Communications in Nonlinear Science and Numerical Simulation 79, 104888, 2019 | 12 | 2019 |
Note on a discretization of a linear fractional differential equation J Čermák, T Kisela Mathematica Bohemica 135 (2), 179-188, 2010 | 12 | 2010 |
Oscillatory and asymptotic properties of fractional delay differential equations J Cermak, T Kisela Texas State University, Department of Mathematics, 2019 | 9 | 2019 |
Basic of quantitative theory of linear fractional difference equation [Ph. D. thesis] T Kisela Brno University of Technology, 2012 | 5 | 2012 |
The Lambert function method in qualitative analysis of fractional delay differential equations J Čermák, T Kisela, L Nechvátal Fractional Calculus and Applied Analysis 26 (4), 1545-1565, 2023 | 4 | 2023 |
Applications of the fractional calculus: on a discretization of fractional diffusion equation in one dimension T Kisela Komunikácie-vedecké listy Žilinskej univerzity v Žiline 12 (1), 5-11, 2010 | 4 | 2010 |
Basics of qualitative theory of linear fractional difference equations T Kisela Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019 | 3 | 2019 |
An analysis of the stability boundary for a linear fractional difference system T Kisela Mathematica Bohemica 140 (2), 195-203, 2015 | 3 | 2015 |