关注
Daniel Siegismund
Daniel Siegismund
Genedata AG
在 genedata.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Reproducible biofilm cultivation of chemostat-grown Escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter
C Lüdecke, KD Jandt, D Siegismund, MJ Kujau, E Zang, M Rettenmayr, ...
PloS one 9 (1), e84837, 2014
792014
Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling
D Siegismund, A Undisz, S Germerodt, S Schuster, M Rettenmayr
Acta biomaterialia 10 (1), 267-275, 2014
572014
Evaluation of wettability and surface energy of native Nitinol surfaces in relation to hemocompatibility
SA Shabalovskaya, D Siegismund, E Heurich, M Rettenmayr
Materials Science and Engineering: C 33 (1), 127-132, 2013
302013
Fibrinogen adsorption on biomaterials–a numerical study
D Siegismund, TF Keller, KD Jandt, M Rettenmayr
Macromolecular bioscience 10 (10), 1216-1223, 2010
282010
Know when you don't know: a robust deep learning approach in the presence of unknown phenotypes
O Dürr, E Murina, D Siegismund, V Tolkachev, S Steigele, B Sick
Assay and drug development technologies 16 (6), 343-349, 2018
212018
Developing deep learning applications for life science and pharma industry
D Siegismund, V Tolkachev, S Heyse, B Sick, O Duerr, S Steigele
Drug research 68 (06), 305-310, 2018
142018
Deep learning-based HCS image analysis for the enterprise
S Steigele, D Siegismund, M Fassler, M Kustec, B Kappler, T Hasaka, ...
SLAS DISCOVERY: Advancing the Science of Drug Discovery 25 (7), 812-821, 2020
122020
Benchmarking feature selection methods for compressing image information in high-content screening
D Siegismund, M Fassler, S Heyse, S Steigele
SLAS technology 27 (1), 85-93, 2022
102022
Quantitative modeling of fibrinogen adsorption on different biomaterials
D Siegismund, A Schroeter, S Schuster, M Rettenmayr
Cellular and Molecular Bioengineering 6, 210-219, 2013
62013
Self-supervised representation learning for high-content screening
D Siegismund, M Wieser, S Heyse, S Steigele
International Conference on Medical Imaging with Deep Learning, 1108-1124, 2022
52022
Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces: application of point pattern analysis
D Siegismund, A Schroeter, C Lüdecke, A Undisz, KD Jandt, M Roth, ...
Biofouling 30 (9), 1023-1033, 2014
52014
Uncertainty with deep learning: a practical view on out of distribution detection
D Siegismund, S Heyse, S Steigele
2020 7th Swiss Conference on Data Science (SDS), 65-66, 2020
32020
Learning Channel Importance for High Content Imaging with Interpretable Deep Input Channel Mixing
D Siegismund, M Wieser, S Heyse, S Steigele
DAGM German Conference on Pattern Recognition, 335-347, 2023
22023
Vision transformers show improved robustness in high-content image analysis
M Wieser, D Siegismund, S Heyse, S Steigele
2022 9th Swiss Conference on Data Science (SDS), 71-72, 2022
22022
PCIM: Learning Pixel Attributions via Pixel-wise Channel Isolation Mixing in High Content Imaging
D Siegismund, M Wieser, S Heyse, S Steigele
arXiv preprint arXiv:2412.02275, 2024
2024
Author's personal copy
D SIEGISMUND, A SCHROETER, S SCHUSTER, M RETTENMAYR
Adsorption Processes of Proteins and Bacteria on Biomaterial Surfaces …, 2015
2015
Adsorption processes of proteins and bacteria on biomaterial surfaces: insight from modeling
D Siegismund
2015
Roost, Dano 63 Rosso, Paolo 29 Sassik, Bernhard 1 Schenck, Wolfram 61
L Barth, A Bhardwaj, SA Bigdeli, M Bravin, M Christen, P Cudré-Mauroux, ...
系统目前无法执行此操作,请稍后再试。
文章 1–18