Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment LJ Marcos-Zambrano, K Karaduzovic-Hadziabdic, T Loncar Turukalo, ... Frontiers in microbiology 12, 634511, 2021 | 224 | 2021 |
Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions I Moreno-Indias, L Lahti, M Nedyalkova, I Elbere, G Roshchupkin, ... Frontiers in microbiology 12, 635781, 2021 | 60 | 2021 |
Recursive query facilities in relational databases: a survey P Przymus, A Boniewicz, M Burzańska, K Stencel International Conference on Bio-Science and Bio-Technology, 89-99, 2010 | 43* | 2010 |
Profile based recommendation of code reviewers M Fejzer, P Przymus, K Stencel Journal of Intelligent Information Systems 50, 597-619, 2018 | 37 | 2018 |
Dynamic compression strategy for time series database using GPU P Przymus, K Kaczmarski New Trends in Databases and Information Systems: 17th East European …, 2014 | 25 | 2014 |
Improving high-performance GPU graph traversal with compression K Kaczmarski, P Przymus, P Rzążewski New Trends in Database and Information Systems II: Selected papers of the …, 2015 | 17 | 2015 |
Improving multivariate time series forecasting with random walks with restarts on causality graphs P Przymus, Y Hmamouche, A Casali, L Lakhal 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017 | 14 | 2017 |
Time series queries processing with GPU support P Przymus, K Kaczmarski New Trends in Databases and Information Systems: 17th East European …, 2014 | 13 | 2014 |
Zebra mussels’ behaviour detection, extraction and classification using wavelets and kernel methods P Przymus, K Rykaczewski, R Wiśniewski Future Generation Computer Systems 33, 81-89, 2014 | 12 | 2014 |
Compression planner for time series database with GPU support P Przymus, K Kaczmarski Transactions on Large-Scale Data-and Knowledge-Centered Systems XV: Selected …, 2014 | 12 | 2014 |
Improving Efficiency of Data Intensive Applications on GPU Using Lightweight Compression P Przymus, K Kaczmarski On the Move to Meaningful Internet Systems: OTM 2012 Workshops - Lecture …, 2012 | 10 | 2012 |
Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. Front Microbiol 12: 634511 LJ Marcos-Zambrano, K Karaduzovic-Hadziabdic, T Loncar Turukalo, ... | 9 | 2021 |
Application of wavelets and kernel methods to detection and extraction of behaviours of freshwater mussels P Przymus, K Rykaczewski, R Wiśniewski Future Generation Information Technology: Third International Conference …, 2011 | 9 | 2011 |
Tracking Buggy Files: New Efficient Adaptive Bug Localization Algorithm M Fejzer, J Narebski, P Przymus, K Stencel IEEE Transactions on Software Engineering, 1-1, 2021 | 8 | 2021 |
GFSM: a feature selection method for improving time series forecasting Y Hmamouche, P Przymus, A Casali, L Lakhal International Journal On Advances in Systems and Measurements, 2017 | 7 | 2017 |
Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action D D’Elia, J Truu, L Lahti, M Berland, G Papoutsoglou, M Ceci, A Zomer, ... Frontiers in Microbiology 14, 1257002, 2023 | 6 | 2023 |
Large multivariate time series forecasting: survey on methods and scalability Y Hmamouche, PM Przymus, H Alouaoui, A Casali, L Lakhal Utilizing big data paradigms for business intelligence, 170-197, 2019 | 6 | 2019 |
A bi-objective optimization framework for heterogeneous CPU/GPU query plans P Przymus, K Kaczmarski, K Stencel Fundamenta Informaticae 135 (4), 483-501, 2014 | 6 | 2014 |
A toolbox of machine learning software to support microbiome analysis LJ Marcos-Zambrano, VM López-Molina, B Bakir-Gungor, M Frohme, ... Frontiers in microbiology 14, 1250806, 2023 | 3 | 2023 |
Fixed length lightweight compression for GPU revised K Kaczmarski, P Przymus Journal of Parallel and Distributed Computing 107, 19-36, 2017 | 3 | 2017 |