关注
Nilam Tathawadekar
Nilam Tathawadekar
在 tum.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Armdn: Associative and recurrent mixture density networks for eretail demand forecasting
S Mukherjee, D Shankar, A Ghosh, N Tathawadekar, P Kompalli, ...
arXiv preprint arXiv:1803.03800, 2018
362018
Modeling of the nonlinear flame response of a Bunsen-type flame via multi-layer perceptron
N Tathawadekar, NAK Doan, CF Silva, N Thuerey
Proceedings of the Combustion Institute 38 (4), 6261-6269, 2021
262021
Incomplete to complete multiphysics forecasting: a hybrid approach for learning unknown phenomena
NN Tathawadekar, NAK Doan, CF Silva, N Thuerey
Data-Centric Engineering 4, e27, 2023
62023
Physical Quantities Reconstruction in Reacting Flows with Deep Learning
N Tathawadekar, C Silva, P Sitte, NAK Doan
INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265 (6), 1645-1656, 2023
42023
Linear and nonlinear flame response prediction of turbulent flames using neural network models
N Tathawadekar, A Ösün, AJ Eder, CF Silva, N Thuerey
International Journal of Spray and Combustion Dynamics 16 (3), 93-103, 2024
12024
Modelling Flame Dynamics with Deep Learning Methods
N Tathawadekar
Technische Universität München, 2024
2024
Control of reacting flows with hybrid differentiable/deep learning flow solver
N Tathawadekar, C Silva, N Thuerey, NAK Doan
Bulletin of the American Physical Society, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–7