Sharp nonuniqueness for the Navier–Stokes equations A Cheskidov, X Luo Inventiones mathematicae 229 (3), 987-1054, 2022 | 84 | 2022 |
Stationary solutions and nonuniqueness of weak solutions for the Navier–Stokes equations in high dimensions X Luo Archive for Rational Mechanics and Analysis 233, 701-747, 2019 | 65 | 2019 |
Nonuniqueness of weak solutions for the transport equation at critical space regularity A Cheskidov, X Luo Annals of PDE 7, 1-45, 2021 | 59 | 2021 |
Energy equality for the Navier–Stokes equations in weak-in-time Onsager spaces A Cheskidov, X Luo Nonlinearity 33 (4), 1388, 2020 | 53 | 2020 |
-Critical Nonuniqueness for the 2D Navier-Stokes Equations A Cheskidov, X Luo Annals of PDE 9 (2), 13, 2023 | 48 | 2023 |
Extreme temporal intermittency in the linear Sobolev transport: Almost smooth nonunique solutions A Cheskidov, X Luo Analysis & PDE 17 (6), 2161-2177, 2024 | 16 | 2024 |
Illposedness of Vortex Patches A Kiselev, X Luo Archive for Rational Mechanics and Analysis 247 (3), 57, 2023 | 14 | 2023 |
On Nonexistence of Splash Singularities for the -SQG Patches A Kiselev, X Luo Journal of Nonlinear Science 33 (2), 37, 2023 | 14 | 2023 |
Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise M Hofmanová, X Luo, R Zhu, X Zhu Mathematische Annalen, 1-42, 2024 | 9 | 2024 |
Anomalous Dissipation, Anomalous Work, and Energy Balance for the Navier--Stokes Equations A Cheskidov, X Luo SIAM Journal on Mathematical Analysis 53 (4), 3856-3887, 2021 | 7 | 2021 |
The -SQG patch problem is illposed in and A Kiselev, X Luo arXiv preprint arXiv:2306.04193, 2023 | 3 | 2023 |
On the possible time singularities for the 3D Navier–Stokes equations X Luo Physica D: Nonlinear Phenomena 395, 37-42, 2019 | 3 | 2019 |
A Beale–Kato–Majda criterion with optimal frequency and temporal localization X Luo Journal of Mathematical Fluid Mechanics 21, 1-16, 2019 | 3 | 2019 |
THE α-SQG PATCH PROBLEM IS ILLPOSED IN C2, β AND A KISELEV, X LUO | | 2024 |
Illposedness of incompressible fluids in supercritical Sobolev spaces X Luo arXiv preprint arXiv:2404.07813, 2024 | | 2024 |
Eulerian uniqueness of the -SQG patch problem X Luo arXiv preprint arXiv:2403.04219, 2024 | | 2024 |
The α α‐SQG patch problem is illposed in C 2, β C^2,β and W 2, p W^2,p A Kiselev, X Luo Communications on Pure and Applied Mathematics, 0 | | |