关注
Maximilian Nagl
Maximilian Nagl
在 ur.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Opening the black box–Quantile neural networks for loss given default prediction
R Kellner, M Nagl, D Rösch
Journal of Banking & Finance 134, 106334, 2022
392022
Introducing an interpretable deep learning approach to domain-specific dictionary creation: A use case for conflict prediction
S Häffner, M Hofer, M Nagl, J Walterskirchen
Political Analysis 31 (4), 481-499, 2023
122023
Parameter estimation, bias correction and uncertainty quantification in the Vasicek credit portfolio model
M Pfeuffer, M Nagl, M Fischer, D Rösch
Journal of Risk 22 (4), 1-29, 2020
122020
Deep calibration of financial models: turning theory into practice
P Büchel, M Kratochwil, M Nagl, D Rösch
Review of Derivatives Research 25 (2), 109-136, 2022
72022
Quantifying uncertainty of machine learning methods for loss given default
M Nagl, M Nagl, D Rösch
Frontiers in Applied Mathematics and Statistics 8, 1076083, 2022
42022
Does non-linearity in risk premiums vary over time?
M Nagl
Available at SSRN 4638168, 2023
32023
Time Varying Dependences Between Real Estate Crypto, Real Estate and Crypto Returns
C Nagl, M Nagl, D Rösch, W Schäfers, J Freybote
Journal of Real Estate Research, 1-29, 2023
22023
Credit line exposure at default modelling using Bayesian mixed effect quantile regression
J Betz, M Nagl, D Rösch
Journal of the Royal Statistical Society Series A: Statistics in Society 185 …, 2022
22022
Intricacy of cryptocurrency returns
M Nagl
Economics Letters 239, 111746, 2024
2024
Dynamics of REIT Returns and Volatility: Analyzing Time-Varying Drivers Using an Explainable Machine Learning Approach
H Jenett, M Nagl, C Nagl, MK Price, W Schäfers
ERES, 2024
2024
Virtual Land as a New Asset Class: Examining the Relationship with Physical Real Estate
H Leonhard, M Nagl, W Schäfers
Available at SSRN 4567859, 2023
2023
Determinants of US REIT Bond Risk Premia with Explainable Machine Learning
J Kozak, M Nagl, C Nagl, E Beracha, W Schäfers
ERES, 2023
2023
Statistical and machine learning for credit and market risk management
M Nagl
2022
Estimating Asset Correlations from Default Data
M Nagl, Y Havrylenko, M Pfeuffer, K Jakob, M Fischer, D Roesch
2018
Package ‘AssetCorr’
M Nagl, Y Havrylenko, MM Nagl
2018
Non-linearity and the distribution of market based loss rates
M Nagl, M Nagl, D Rösch
系统目前无法执行此操作,请稍后再试。
文章 1–16