关注
Charlie Saillard
Charlie Saillard
Bioptimus
在 bioptimus.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
A deep learning model to predict RNA-Seq expression of tumours from whole slide images
B Schmauch, A Romagnoni, E Pronier, C Saillard, P Maillé, J Calderaro, ...
Nature communications 11 (1), 3877, 2020
3442020
Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides
C Saillard, B Schmauch, O Laifa, M Moarii, S Toldo, M Zaslavskiy, ...
Hepatology 72 (6), 2000-2013, 2020
2222020
Diagnosis of focal liver lesions from ultrasound using deep learning
B Schmauch, P Herent, P Jehanno, O Dehaene, C Saillard, C Aubé, ...
Diagnostic and interventional imaging 100 (4), 227-233, 2019
1282019
Detection and characterization of MRI breast lesions using deep learning
P Herent, B Schmauch, P Jehanno, O Dehaene, C Saillard, C Balleyguier, ...
Diagnostic and interventional imaging 100 (4), 219-225, 2019
1152019
Self supervised learning improves dMMR/MSI detection from histology slides across multiple cancers
C Saillard, O Dehaene, T Marchand, O Moindrot, A Kamoun, B Schmauch, ...
arXiv preprint arXiv:2109.05819, 2021
382021
Federated survival analysis with discrete-time cox models
M Andreux, A Manoel, R Menuet, C Saillard, C Simpson
arXiv preprint arXiv:2006.08997, 2020
272020
Scaling self-supervised learning for histopathology with masked image modeling
A Filiot, R Ghermi, A Olivier, P Jacob, L Fidon, A Mac Kain, C Saillard, ...
medRxiv, 2023.07. 21.23292757, 2023
242023
Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides
C Saillard, R Dubois, O Tchita, N Loiseau, T Garcia, A Adriansen, ...
Nature Communications 14 (1), 6695, 2023
21*2023
Pacpaint: a histology-based deep learning model uncovers the extensive intratumor molecular heterogeneity of pancreatic adenocarcinoma
C Saillard, F Delecourt, B Schmauch, O Moindrot, M Svrcek, ...
Nature Communications 14 (1), 3459, 2023
9*2023
1124O Prediction of distant relapse in patients with invasive breast cancer from deep learning models applied to digital pathology slides
IJ Garberis, C Saillard, D Drubay, B Schmauch, V Aubert, A Jaeger, ...
Annals of Oncology 32, S921, 2021
72021
HE2RNA: a deep learning model for transcriptomic learning from digital pathology
E Pronier, B Schmauch, A Romagnoni, C Saillard, J Calderaro, M Sefta, ...
Cancer Res 80, 2105-2105, 2020
32020
Deep learning allows assessment of risk of metastatic relapse from invasive breast cancer histological slides
I Garberis, V Gaury, C Saillard, D Drubay, K Elgui, B Schmauch, A Jaeger, ...
bioRxiv, 2022.11. 28.518158, 2022
22022
Identification of pancreatic adenocarcinoma molecular subtypes on histology slides using deep learning models.
C Saillard, F Delecourt, B Schmauch, O Moindrot, M Svrcek, ...
Journal of Clinical Oncology 39 (15_suppl), 4141-4141, 2021
22021
Systems and methods for determining breast cancer prognosis and associated features
C Saillard, B Schmauch, V Aubert, A Kamoun, M Lacroix-Triki, I Garberis, ...
US Patent App. 18/127,566, 2023
12023
920P Blind validation of MSIntuit, an AI-based pre-screening tool for MSI detection from colorectal cancer H&E slides
M Svrcek, C Saillard, R Dubois, N Loiseau, P Mespoulhe, F Brulport, ...
Annals of Oncology 33, S967, 2022
12022
147P Blind validation of an AI-based tool for predicting distant relapse from breast cancer HES stained slides
IJ Garberis, V Gaury, V Aubert, D Drubay, C Saillard, K Elgui, F Bernigole, ...
Annals of Oncology 33, S607, 2022
12022
SYSTEMS AND METHODS FOR DETERMINING BREAST CANCER PROGNOSIS AND ASSOCIATED FEATURES
C Saillard, B Schmauch, V Aubert, A Kamoun, M Lacroix-triki, I Garberis, ...
US Patent App. 18/186,111, 2024
2024
AI-based identification of FGFR3 mutation status from routine histology slides of muscle-invasive bladder cancer.
C Saillard, PA Bannier, P Mann, C Maussion, C Matek, A Hartmann, ...
Journal of Clinical Oncology 41 (16_suppl), e16580-e16580, 2023
2023
Systems and methods for image preprocessing
P Courtiol, O Moindrot, C Maussion, C Saillard, B Schmauch, G Wainrib
US Patent 11,562,585, 2023
2023
Explainable Deep Learning Predicts Molecular Subtypes and Improves Risk of Relapse Assessment from Invasive Breast Cancer Histological Slides
C Saillard, I Garberis, D Drubay, V Gaury, V Aubert, B Schmauch, ...
LABORATORY INVESTIGATION 102 (SUPPL 1), 187-188, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20