Dense deconvolutional network for skin lesion segmentation H Li, X He, F Zhou, Z Yu, D Ni, S Chen, T Wang, B Lei IEEE journal of biomedical and health informatics 23 (2), 527-537, 2018 | 142 | 2018 |
Fully transformer network for skin lesion analysis X He, EL Tan, H Bi, X Zhang, S Zhao, B Lei Medical Image Analysis 77, 102357, 2022 | 78 | 2022 |
Convolutional descriptors aggregation via cross-net for skin lesion recognition Z Yu, F Jiang, F Zhou, X He, D Ni, S Chen, T Wang, B Lei Applied Soft Computing 92, 106281, 2020 | 40 | 2020 |
Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation X He, Z Yu, T Wang, B Lei, Y Shi Technology and Health Care 26 (S1), 307-316, 2018 | 34 | 2018 |
PTNet: A high-resolution infant MRI synthesizer based on transformer X Zhang, X He, J Guo, N Ettehadi, N Aw, D Semanek, J Posner, A Laine, ... arXiv preprint arXiv:2105.13993, 2021 | 21 | 2021 |
PTNet3D: A 3D high-resolution longitudinal infant brain MRI synthesizer based on transformers X Zhang, X He, J Guo, N Ettehadi, N Aw, D Semanek, J Posner, A Laine, ... IEEE transactions on medical imaging 41 (10), 2925-2940, 2022 | 17 | 2022 |
Skin lesion segmentation via deep RefineNet X He, Z Yu, T Wang, B Lei Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2017 | 13 | 2017 |
Cross-modal transfer learning for HEp-2 cell classification based on deep residual network H Lei, T Han, W Huang, JY Kuo, Z Yu, X He, B Lei 2017 IEEE International Symposium on Multimedia (ISM), 465-468, 2017 | 11 | 2017 |
Skin lesion segmentation via dense connected deconvolutional network H Li, X He, Z Yu, F Zhou, JZ Cheng, L Huang, T Wang, B Lei 2018 24th International Conference on Pattern Recognition (ICPR), 671-675, 2018 | 9 | 2018 |
Recursive refinement network for deformable lung registration between exhale and inhale CT scans X He, J Guo, X Zhang, H Bi, S Gerard, D Kaczka, A Motahari, E Hoffman, ... arXiv preprint arXiv:2106.07608, 2021 | 8 | 2021 |
Clinical quality control of MRI total kidney volume measurements in autosomal dominant polycystic kidney disease C Zhu, H Dev, A Sharbatdaran, X He, D Shimonov, JM Chevalier, ... Tomography 9 (4), 1341-1355, 2023 | 7 | 2023 |
Test retest reproducibility of organ volume measurements in ADPKD using 3D multimodality deep learning X He, Z Hu, H Dev, DJ Romano, A Sharbatdaran, SI Raza, SJ Wang, ... Academic Radiology 31 (3), 889-899, 2024 | 5 | 2024 |
Neural pre-processing: A learning framework for end-to-end brain mri pre-processing X He, AQ Wang, MR Sabuncu International Conference on Medical Image Computing and Computer-Assisted …, 2023 | 3 | 2023 |
SANet: Superpixel Attention Network for Skin Lesion Attributes Detection X He, B Lei, T Wang arXiv preprint arXiv:1910.08995, 2019 | 2 | 2019 |
Feasibility of Water Therapy for Slowing Autosomal Dominant Polycystic Kidney Disease Progression H Dev, C Zhu, I Barash, JD Blumenfeld, X He, A RoyChoudhury, A Wu, ... Kidney360, 10.34067, 2024 | 1 | 2024 |
Improved predictions of total kidney volume growth rate in ADPKD using two-parameter least squares fitting Z Hu, A Sharbatdaran, X He, C Zhu, JD Blumenfeld, H Rennert, Z Zhang, ... Scientific Reports 14 (1), 13794, 2024 | | 2024 |
Deep Learning-Based Liver Cyst Segmentation in MRI for Autosomal Dominant Polycystic Kidney Disease (ADPKD) MC Moghadam, M Aspal, X He, DJ Romano, A Sharbatdaran, Z Hu, ... Radiology Advances, umae014, 2024 | | 2024 |
A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression C Zhu, X He, JD Blumenfeld, Z Hu, H Dev, U Sattar, V Bazojoo, ... Biomedicines 12 (5), 1133, 2024 | | 2024 |