关注
Canberk Ekmekci
Canberk Ekmekci
在 ur.rochester.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Uncertainty quantification for deep unrolling-based computational imaging
C Ekmekci, M Cetin
IEEE Transactions on Computational Imaging 8, 1195-1209, 2022
82022
What does your computational imaging algorithm not know?: A Plug-and-Play model quantifying model uncertainty
C Ekmekci, M Cetin
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
52021
On the detection of upper mantle discontinuities with radon-transformed receiver functions (CRISP-RF)
T Olugboji, Z Zhang, S Carr, C Ekmekci, M Cetin
Geophysical Journal International 236 (2), 748-763, 2024
32024
Quantifying generative model uncertainty in posterior sampling methods for computational imaging
C Ekmekci, M Cetin
NeurIPS 2023 Workshop on Deep Learning and Inverse Problems, 2023
32023
Model-based Bayesian deep learning architecture for linear inverse problems in computational imaging
C Ekmekci, M Cetin
Electronic Imaging 33, 1-7, 2021
32021
Seeing into the Mantle by Sifting through Echoes, Reverbs & Noise
TM Olugboji, Z Zhang, C Ekmekci, C Mujdat, S Carr
AGU Fall Meeting Abstracts 2023 (12), DI11B-0012, 2023
2023
Automatic Parameter Tuning for Plug-and-Play Algorithms Using Generalized Cross Validation and Stein’s Unbiased Risk Es-timation for Linear Inverse Problems in Computational …
C Ekmekci, M Cetin
2023
系统目前无法执行此操作,请稍后再试。
文章 1–7