关注
Charlotte Durand
Charlotte Durand
Postdoctoral researcher
在 univ-grenoble-alpes.fr 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
TS Finn, C Durand, A Farchi, M Bocquet, Y Chen, A Carrassi, ...
The Cryosphere 17 (7), 2965-2991, 2023
152023
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
C Durand, TS Finn, A Farchi, M Bocquet, G Boutin, E Ólason
The Cryosphere 18 (4), 1791-1815, 2024
82024
Towards diffusion models for large-scale sea-ice modelling
TS Finn, C Durand, A Farchi, M Bocquet, J Brajard
arXiv preprint arXiv:2406.18417, 2024
42024
Representation learning with unconditional denoising diffusion models for dynamical systems
TS Finn, L Disson, A Farchi, M Bocquet, C Durand
EGUsphere 2023, 1-39, 2023
42023
Generative diffusion for regional surrogate models from sea‐ice simulations
TS Finn, C Durand, A Farchi, M Bocquet, P Rampal, A Carrassi
Journal of Advances in Modeling Earth Systems 16 (10), e2024MS004395, 2024
12024
Representation learning with unconditional denoising diffusion models for dynamical systems
TS Finn, L Disson, A Farchi, M Bocquet, C Durand
Nonlinear Processes in Geophysics 31 (3), 409-431, 2024
12024
Accurate deep learning-based filtering for chaotic dynamics by identifying instabilities without an ensemble
M Bocquet, A Farchi, TS Finn, C Durand, S Cheng, Y Chen, I Pasmans, ...
Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (9), 2024
12024
A data-driven sea-ice model with generative deep learning
TS Finn, C Durand, F Porro, A Farchi, M Bocquet, Y Chen, A Carrassi
EGU24, 2024
2024
Deep learning for surrogate modelling of neXtSIM
C Durand, T Finn, A Farchi, M Bocquet, E Olason
EGU General Assembly Conference Abstracts, EGU-12810, 2023
2023
Deep reinforcement learning of model error corrections
T Finn, C Durand, A Farchi, M Bocquet
XXVIII General Assembly of the International Union of Geodesy and Geophysics …, 2023
2023
Bayesian online algorithms for learning data-driven models of chaotic dynamics
M Bocquet, A Farchi, Q Malartic, T Finn, C Durand, M Bonavita, ...
XXVIII General Assembly of the International Union of Geodesy and Geophysics …, 2023
2023
Hybrid modelling with deep learning for improved sea-ice forecasting
T Finn, C Durand, A Farchi, M Bocquet, Y Chen, A Carassi, V Dansereau, ...
XXVIII General Assembly of the International Union of Geodesy and Geophysics …, 2023
2023
Learning and screening of neural networks architectures for sub-grid-scale parametrizations of sea-ice dynamics from idealised twin experiments
T Finn, C Durand, A Farchi, M Bocquet, Y Chen, A Carrassi, V Dansereau
EGU General Assembly Conference Abstracts, EGU22-5910, 2022
2022
Deep learning of subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell-Elasto-Brittle
TS Finn, C Durand, A Farchi, M Bocquet, Y Chen, A Carrassi, ...
Combining data assimilation and machine learning to build data-driven models of chaotic dynamics DA-based ML & ML-based DA
M Bocquet, Q Malartic, A Farchi, M Bonavita, P Laloyaux, M Chrust, T Finn, ...
Bayesian offline and online algorithms for learning data-driven models of chaotic dynamics... with applications
M Bocquet, A Farchi, Q Malartic, M Bonavita, P Laloyaux, M Chrust, T Finn, ...
Beyond one iteration of machine learning and data assimilation steps for learning meteorological models?
M Bocquet, A Farchi, Q Malartic, M Bonavita, P Laloyaux, M Chrust, T Finn, ...
系统目前无法执行此操作,请稍后再试。
文章 1–17