Paley partial difference sets in groups of order n4 and 9n4 for any odd n> 1 J Polhill Journal of Combinatorial Theory, Series A 117 (8), 1027-1036, 2010 | 22 | 2010 |
Paley type group schemes and planar Dembowski–Ostrom polynomials YQ Chen, J Polhill Discrete mathematics 311 (14), 1349-1364, 2011 | 21 | 2011 |
Paley type partial difference sets in non p-groups J Polhill Designs, Codes and Cryptography 52 (2), 163-169, 2009 | 20 | 2009 |
New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups J Polhill Designs, Codes and Cryptography 46, 365-377, 2008 | 20 | 2008 |
Linking systems in nonelementary abelian groups JA Davis, WJ Martin, JB Polhill Journal of Combinatorial Theory, Series A 123 (1), 92-103, 2014 | 15 | 2014 |
A new product construction for partial difference sets J Polhill, JA Davis, K Smith Designs, codes and cryptography 68, 155-161, 2013 | 13 | 2013 |
Minimal distinct distance trees B Calhoun, K Ferland, L Lister, J Polhill Journal of Combinatorial Mathematics and Combinatorial Computing 61, 33, 2007 | 13 | 2007 |
Constructions of nested partial difference sets with Galois rings JB Polhill Designs, Codes and Cryptography 25 (3), 299-309, 2002 | 13 | 2002 |
Negative Latin square type partial difference sets and amorphic association schemes with Galois rings J Polhill Journal of Combinatorial Designs 17 (3), 266-282, 2009 | 11 | 2009 |
Difference set constructions of DRADs and association schemes JA Davis, J Polhill Journal of Combinatorial Theory, Series A 117 (5), 598-605, 2010 | 10 | 2010 |
Generalizations of Partial Difference Sets from Cyclotomy to Nonelementary Abelian -Groups J Polhill the electronic journal of combinatorics, R125-R125, 2008 | 10 | 2008 |
Totally magic labelings of graphs. WC Calhoun, K Ferland, L Lister, JB Polhill Australas. J Comb. 32, 47-60, 2005 | 10 | 2005 |
Summing up the Euler φ function P Loomis, M Plytage, J Polhill The College Mathematics Journal 39 (1), 34-42, 2008 | 9 | 2008 |
Partial difference sets and amorphic group schemes from pseudo-quadratic bent functions YQ Chen, J Polhill Journal of Algebraic Combinatorics 37, 11-26, 2013 | 7 | 2013 |
A new family of partial difference sets in 3-groups J Polhill Designs, Codes and Cryptography 87, 1639-1646, 2019 | 4 | 2019 |
A construction of layered relative difference sets using Galois rings JB Polhill Ars Combinatoria 78, 83-94, 2006 | 4 | 2006 |
Denniston partial difference sets exist in the odd prime case JA Davis, S Huczynska, L Johnson, J Polhill Finite Fields and Their Applications 99, 102499, 2024 | 3 | 2024 |
Genuinely nonabelian partial difference sets J Polhill, JA Davis, KW Smith, E Swartz Journal of Combinatorial Designs 32 (7), 351-370, 2024 | 3 | 2024 |
Perfect distance forests. WC Calhoun, JB Polhill Australas. J Comb. 42, 211-222, 2008 | 3 | 2008 |
Improving retention in a stem field with a major specific one-credit course for first year students JB Polhill Louisiana Association of Teachers of Mathematics 4 (2), 1-10, 2007 | 3 | 2007 |