HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients E Diao, J Ding, V Tarokh https://arxiv.org/pdf/2010.01264.pdf, 2020 | 459 | 2020 |
Model Selection Techniques -- An Overview J Ding, V Tarokh, Y Yang IEEE Signal Processing Magazine, 2018 | 337 | 2018 |
Speech emotion recognition with dual-sequence LSTM architecture J Wang, M Xue, R Culhane, E Diao, J Ding, V Tarokh ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 145 | 2020 |
Bridging AIC and BIC: a new criterion for autoregression J Ding, V Tarokh, Y Yang IEEE Transactions on Information Theory 64 (6), 4024-4043, 2017 | 91 | 2017 |
Perturbation analysis of orthogonal matching pursuit J Ding, L Chen, Y Gu IEEE Transactions on Signal processing 61 (2), 398-410, 2012 | 82 | 2012 |
Federated learning challenges and opportunities: An outlook J Ding, E Tramel, AK Sahu, S Wu, S Avestimehr, T Zhang ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022 | 55 | 2022 |
Assisted Learning: A Framework for Multi-Organization Learning X Xian, X Wang, J Ding, R Ghanadan NeurIPS 2020 (spotlight), arXiv preprint arXiv:2004.00566, 2020 | 49 | 2020 |
Bayesian model comparison with the Hyvärinen score: Computation and consistency S Shao, PE Jacob, J Ding, V Tarokh Journal of the American Statistical Association, 2019 | 46 | 2019 |
Semifl: Semi-supervised federated learning for unlabeled clients with alternate training E Diao, J Ding, V Tarokh Advances in Neural Information Processing Systems 35, 17871-17884, 2022 | 43 | 2022 |
SemiFL: Communication efficient semi-supervised federated learning with unlabeled clients E Diao, J Ding, V Tarokh arXiv preprint arXiv:2106.01432 3, 2021 | 40 | 2021 |
Information laundering for model privacy X Wang, Y Xiang, J Gao, J Ding arXiv preprint arXiv:2009.06112, 2020 | 32 | 2020 |
Explainable multi-task learning for multi-modality biological data analysis X Tang, J Zhang, Y He, X Zhang, Z Lin, S Partarrieu, EB Hanna, Z Ren, ... Nature communications 14 (1), 2546, 2023 | 24 | 2023 |
Multiple change point analysis: Fast implementation and strong consistency J Ding, Y Xiang, L Shen, V Tarokh IEEE Transactions on Signal Processing 65 (17), 4495-4510, 2017 | 23 | 2017 |
Restricted recurrent neural networks E Diao, J Ding, V Tarokh 2019 IEEE international conference on big data (big data), 56-63, 2019 | 22 | 2019 |
Drasic: Distributed recurrent autoencoder for scalable image compression E Diao, J Ding, V Tarokh 2020 Data Compression Conference (DCC), 3-12, 2020 | 20 | 2020 |
Fednas: Federated deep learning via neural architecture search C He, E Mushtaq, J Ding, S Avestimehr | 18 | 2021 |
Pruning deep neural networks from a sparsity perspective E Diao, G Wang, J Zhan, Y Yang, J Ding, V Tarokh arXiv preprint arXiv:2302.05601, 2023 | 17 | 2023 |
SLANTS: Sequential adaptive nonlinear modeling of time series Q Han, J Ding, EM Airoldi, V Tarokh IEEE Transactions on Signal Processing 65 (19), 4994-5005, 2017 | 16 | 2017 |
Complementary lattice arrays for coded aperture imaging J Ding, M Noshad, V Tarokh Journal of the Optical Society of America A 33 (5), 863-881, 2016 | 16 | 2016 |
Interval Privacy: A Framework for Privacy-Preserving Data Collection J Ding, B Ding IEEE Transactions on Signal Processing, 2022 | 14 | 2022 |