Conditional model selection in mixed-effects models with caic4 B Säfken, D Rügamer, T Kneib, S Greven Journal of Statistical Software 99 (8), 1-30, 2021 | 94 | 2021 |
Giardiosis and other enteropathogenic infections: a study on diarrhoeic calves in Southern Germany J Gillhuber, D Rügamer, K Pfister, MC Scheuerle BMC research notes 7, 1-9, 2014 | 72 | 2014 |
Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany C Fritz, E Dorigatti, D Rügamer Scientific Reports 12 (1), 3930, 2022 | 71 | 2022 |
Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain BXW Liew, FM Kovacs, D Rügamer, A Royuela European Spine Journal 31 (8), 2082-2091, 2022 | 49 | 2022 |
Boosting Functional Regression Models with FDboost S Brockhaus, D Rügamer, S Greven Journal of Statistical Software 94 (10), 2020 | 48 | 2020 |
Predictors of sudden cardiac death in doberman pinschers with dilated cardiomyopathy L Klüser, PJ Holler, J Simak, G Tater, P Smets, D Rügamer, H Küchenhoff, ... Journal of Veterinary Internal Medicine 30 (3), 722-732, 2016 | 48 | 2016 |
Semi-structured Distributional Regression D Rügamer, C Kolb, N Klein The American Statistician, 1-25, 2023 | 46* | 2023 |
A General Machine Learning Framework for Survival Analysis A Bender, D Rügamer, F Scheipl, B Bischl ECML-PKDD 2020, 2020 | 32 | 2020 |
FDboost: Boosting functional regression models S Brockhaus, D Rügamer R package version 0.2-0, URL https://CRAN. R-project. org/package= FDboost, 2016 | 31 | 2016 |
Boosting factor-specific functional historical models for the detection of synchronisation in bioelectrical signals D Rügamer, S Brockhaus, K Gentsch, K Scherer, S Greven Journal of Royal Statistical Society: Series C, 2016 | 29 | 2016 |
Interpretable machine learning models for classifying low back pain status using functional physiological variables BXW Liew, D Rugamer, AM De Nunzio, D Falla European Spine Journal 29 (8), 1845-1859, 2020 | 26 | 2020 |
Deep Conditional Transformation Models P Baumann, T Hothorn, D Rügamer ECML-PKDD 2021 12977, 2021 | 23 | 2021 |
Semi-Structured Deep Piecewise Exponential Models P Kopper, S Pölsterl, C Wachinger, B Bischl, A Bender, D Rügamer AAAI 2020, Spring Symposium on Survival Prediction -- Algorithms, Challenges …, 2020 | 22 | 2020 |
cAIC4: Conditional Akaike information criterion for lme4 B Saefken, D Ruegamer, T Kneib, S Greven R package version 0.3, 2018 | 21 | 2018 |
Selective inference after likelihood- or test-based model selection in linear models D Rügamer, S Greven Statistics & Probability Letters 140 (C), 7-12, 2018 | 19 | 2018 |
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift F Ott, D Rügamer, L Heublein, B Bischl, C Mutschler ACM MM 2022, 2022 | 18 | 2022 |
Inference for -Boosting D Rügamer, S Greven Statistics and Computing 30 (2), 279-289, 2020 | 18 | 2020 |
Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy: a machine learning approach BXW Liew, A Peolsson, D Rugamer, J Wibault, H Löfgren, A Dedering, ... Scientific Reports 10 (1), 16782, 2020 | 17 | 2020 |
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis P Kopper, S Wiegrebe, B Bischl, A Bender, D Rügamer PAKDD 2022, 249-261, 2022 | 16* | 2022 |
Joint classification and trajectory regression of online handwriting using a multi-task learning approach F Ott, D Rügamer, L Heublein, B Bischl, C Mutschler WACV 2022, 266-276, 2022 | 16 | 2022 |