Analysis of Langevin Monte Carlo via convex optimization A Durmus, S Majewski, B Miasojedow Journal of Machine Learning Research 20 (73), 1-46, 2019 | 222 | 2019 |
Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data NC Chung, BŻ Miasojedow, M Startek, A Gambin BMC bioinformatics 20 (Suppl 15), 644, 2019 | 200 | 2019 |
Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? G Skoraczyński, P Dittwald, B Miasojedow, S Szymkuć, EP Gajewska, ... Scientific reports 7 (1), 3582, 2017 | 135 | 2017 |
An adaptive parallel tempering algorithm B Miasojedow, E Moulines, M Vihola Journal of Computational and Graphical Statistics 22 (3), 649-664, 2013 | 116 | 2013 |
Non-asymptotic analysis of biased stochastic approximation scheme B Karimi, B Miasojedow, E Moulines, HT Wai Conference on Learning Theory, 1944-1974, 2019 | 103 | 2019 |
A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave J Bracher, D Wolffram, J Deuschel, K Görgen, JL Ketterer, A Ullrich, ... Nature communications 12 (1), 5173, 2021 | 66 | 2021 |
Nonasymptotic bounds on the estimation error of MCMC algorithms K Łatuszyński, B Miasojedow, W Niemiro | 59 | 2013 |
Analysis of nonsmooth stochastic approximation: the differential inclusion approach S Majewski, B Miasojedow, E Moulines arXiv preprint arXiv:1805.01916, 2018 | 51 | 2018 |
Hoeffding’s inequalities for geometrically ergodic Markov chains on general state space B Miasojedow Statistics & Probability Letters 87, 115-120, 2014 | 36 | 2014 |
Optimal scaling for the transient phase of Metropolis Hastings algorithms: the longtime behavior B Jourdain, T Lelièvre, B Miasojedow | 35 | 2014 |
Optimal scaling for the transient phase of the random walk Metropolis algorithm: The mean-field limit B Jourdain, T Lelièvre, B Miasojedow | 34 | 2015 |
State-dependent swap strategies and automatic reduction of number of temperatures in adaptive parallel tempering algorithm MK Łącki, B Miasojedow Statistics and Computing 26, 951-964, 2016 | 30 | 2016 |
Adaptive Bayesian SLOPE: model selection with incomplete data W Jiang, M Bogdan, J Josse, S Majewski, B Miasojedow, V Ročková, ... Journal of Computational and Graphical Statistics 31 (1), 113-137, 2022 | 28* | 2022 |
Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning G Skoraczyński, M Kitlas, B Miasojedow, A Gambin Journal of Cheminformatics 15 (1), 6, 2023 | 27 | 2023 |
Optimization of mutation pressure in relation to properties of protein-coding sequences in bacterial genomes P Błażej, B Miasojedow, M Grabińska, P Mackiewicz PloS one 10 (6), e0130411, 2015 | 23 | 2015 |
CONET: copy number event tree model of evolutionary tumor history for single-cell data M Markowska, T Cąkała, B Miasojedow, B Aybey, D Juraeva, J Mazur, ... Genome Biology 23 (1), 128, 2022 | 21 | 2022 |
The wasserstein distance as a dissimilarity measure for mass spectra with application to spectral deconvolution S Majewski, MA Ciach, M Startek, W Niemyska, B Miasojedow, A Gambin 18th International Workshop on Algorithms in Bioinformatics (WABI 2018), 2018 | 18 | 2018 |
National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021 J Bracher, D Wolffram, J Deuschel, K Görgen, JL Ketterer, A Ullrich, ... Communications medicine 2 (1), 136, 2022 | 17 | 2022 |
Predicting the redshift of γ-ray-loud AGNs using supervised machine learning MG Dainotti, M Bogdan, A Narendra, SJ Gibson, B Miasojedow, I Liodakis, ... The Astrophysical Journal 920 (2), 118, 2021 | 17 | 2021 |
Masserstein: Linear regression of mass spectra by optimal transport MA Ciach, B Miasojedow, G Skoraczyński, S Majewski, M Startek, ... Rapid Communications in Mass Spectrometry, e8956, 2020 | 11 | 2020 |