Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty U Bhatt, J Antorán, Y Zhang, QV Liao, P Sattigeri, R Fogliato, ... 2021 AAAI/ACM Conference on AI, Ethics, and Society, 2020 | 230 | 2020 |
Getting a CLUE: A Method for Explaining Uncertainty Estimates J Antorán, U Bhatt, T Adel, A Weller, JM Hernández-Lobato International Conference on Learning Representations (ICLR), 2021, 2020 | 109 | 2020 |
Depth uncertainty in neural networks J Antorán, JU Allingham, JM Hernández-Lobato Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020 | 104 | 2020 |
Bayesian Deep Learning via Subnetwork Inference E Daxberger, E Nalisnick, JU Allingham, J Antorán, ... International Conference on Machine Learning, 2021, 2020 | 83 | 2020 |
Deep end-to-end causal inference T Geffner, J Antoran, A Foster, W Gong, C Ma, E Kiciman, A Sharma, ... arXiv preprint arXiv:2202.02195, 2022 | 68 | 2022 |
Adapting the linearised laplace model evidence for modern deep learning J Antorán, D Janz, JU Allingham, E Daxberger, RR Barbano, E Nalisnick, ... International Conference on Machine Learning, 796-821, 2022 | 26 | 2022 |
Disentangling and learning robust representations with natural clustering J Antoran, A Miguel 2019 18th IEEE International Conference On Machine Learning And Applications …, 2019 | 16 | 2019 |
Sampling-based inference for large linear models, with application to linearised Laplace J Antorán, S Padhy, R Barbano, E Nalisnick, D Janz, ... arXiv preprint arXiv:2210.04994, 2022 | 15 | 2022 |
Expressive yet tractable Bayesian deep learning via subnetwork inference E Daxberger, E Nalisnick, J Allingham, J Antorán, JM Hernández-Lobato | 15 | 2020 |
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior J Antorán, R Barbano, J Leuschner, JM Hernández-Lobato, B Jin arXiv preprint arXiv:2203.00479, 2022 | 12* | 2022 |
Sampling from gaussian process posteriors using stochastic gradient descent JA Lin, J Antorán, S Padhy, D Janz, JM Hernández-Lobato, A Terenin Advances in Neural Information Processing Systems 36, 2024 | 11 | 2024 |
Linearised laplace inference in networks with normalisation layers and the neural g-prior J Antorán, JU Allingham, D Janz, E Daxberger, E Nalisnick, ... Fourth Symposium on Advances in Approximate Bayesian Inference, 2022 | 9 | 2022 |
Bayesian experimental design for computed tomography with the linearised deep image prior R Barbano, J Leuschner, J Antorán, B Jin, JM Hernández-Lobato Adaptive Experimental Design and Active Learning workshop at ICML 2022, 2022 | 8 | 2022 |
Variational depth search in ResNets J Antorán, JU Allingham, JM Hernández-Lobato arXiv preprint arXiv:2002.02797, 2020 | 6 | 2020 |
Understanding Uncertainty in Bayesian Neural Networks JA Cabiscol | 6 | 2019 |
SE (3) equivariant augmented coupling flows L Midgley, V Stimper, J Antorán, E Mathieu, B Schölkopf, ... Advances in Neural Information Processing Systems 36, 2024 | 5 | 2024 |
A probabilistic deep image prior over image space R Barbano, J Antorán, JM Hernández-Lobato, B Jin Fourth Symposium on Advances in Approximate Bayesian Inference, 2022 | 4 | 2022 |
Online laplace model selection revisited JA Lin, J Antorán, JM Hernández-Lobato arXiv preprint arXiv:2307.06093, 2023 | 3 | 2023 |
Addressing bias in active learning with depth uncertainty networks... or not C Murray, JU Allingham, J Antorán, JM Hernández-Lobato I (Still) Can't Believe It's Not Better! Workshop at NeurIPS 2021, 59-63, 2022 | 3 | 2022 |
Stochastic Gradient Descent for Gaussian Processes Done Right JA Lin, S Padhy, J Antorán, A Tripp, A Terenin, C Szepesvári, ... arXiv preprint arXiv:2310.20581, 2023 | 2 | 2023 |