Genetic and functional drivers of diffuse large B cell lymphoma A Reddy, J Zhang, NS Davis, AB Moffitt, CL Love, A Waldrop, S Leppa, ... Cell 171 (2), 481-494. e15, 2017 | 1013 | 2017 |
The genetic basis of hepatosplenic T-cell lymphoma M McKinney, AB Moffitt, P Gaulard, M Travert, L De Leval, A Nicolae, ... Cancer discovery 7 (4), 369-379, 2017 | 204 | 2017 |
The horseshoe+ estimator of ultra-sparse signals A Bhadra, J Datta, NG Polson, B Willard | 196 | 2017 |
Lasso meets horseshoe A Bhadra, J Datta, NG Polson, B Willard Statistical Science 34 (3), 405-427, 2019 | 172 | 2019 |
Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2 AB Moffitt, SL Ondrejka, M McKinney, RE Rempel, JR Goodlad, CH Teh, ... Journal of Experimental Medicine 214 (5), 1371-1386, 2017 | 166 | 2017 |
Asymptotic Properties of Bayes Risk for the Horseshoe Prior J Datta, JK Ghosh Bayesian Analysis 7 (4), 771-792, 2012 | 128 | 2012 |
GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo JA Healy, A Nugent, RE Rempel, AB Moffitt, NS Davis, X Jiang, ... Blood, The Journal of the American Society of Hematology 127 (22), 2723-2731, 2016 | 74 | 2016 |
Age-related changes in the relationship between auditory brainstem responses and envelope-following responses A Parthasarathy, J Datta, JAL Torres, C Hopkins, EL Bartlett Journal of the Association for Research in Otolaryngology 15, 649-661, 2014 | 68 | 2014 |
Default Bayesian analysis with global-local shrinkage priors A Bhadra, J Datta, NG Polson, B Willard Biometrika 103 (4), 955-969, 2016 | 60 | 2016 |
Geomorphons: Landform and property predictions in a glacial moraine in Indiana landscapes Z Libohova, HE Winzeler, B Lee, PJ Schoeneberger, J Datta, PR Owens Catena 142, 66-76, 2016 | 45 | 2016 |
The horseshoe-like regularization for feature subset selection A Bhadra, J Datta, NG Polson, B Willard Sankhya B, 2019 | 35 | 2019 |
Bayesian inference on quasi-sparse count data J Datta, DB Dunson Biometrika 103 (4), 971-983, 2016 | 32* | 2016 |
Horseshoe Regularisation for Machine Learning in Complex and Deep Models1 A Bhadra, J Datta, Y Li, N Polson International Statistical Review 88 (2), 302-320, 2020 | 21 | 2020 |
Prediction risk for the horseshoe regression A Bhadra, J Datta, Y Li, NG Polson, B Willard Journal of Machine Learning Research 20 (78), 1-39, 2019 | 19 | 2019 |
A meta-analysis of the protein components in rattlesnake venom A Deshwal, P Phan, J Datta, R Kannan, SK Thallapuranam Toxins 13 (6), 372, 2021 | 18 | 2021 |
Joint mean–covariance estimation via the horseshoe Y Li, J Datta, BA Craig, A Bhadra Journal of Multivariate Analysis 183, 104716, 2021 | 14* | 2021 |
Precision matrix estimation under the horseshoe-like prior–penalty dual K Sagar, S Banerjee, J Datta, A Bhadra Electronic Journal of Statistics 18 (1), 1-46, 2024 | 13 | 2024 |
Extending the susceptible‐exposed‐infected‐removed (SEIR) model to handle the false negative rate and symptom‐based administration of COVID‐19 diagnostic tests: SEIR‐fansy R Bhaduri, R Kundu, S Purkayastha, M Kleinsasser, LJ Beesley, ... Statistics in medicine 41 (13), 2317-2337, 2022 | 13 | 2022 |
COVID-19 PREDICTION IN SOUTH AFRICA: ESTIMATING THE UNASCERTAINED CASES-THE HIDDEN PART OF THE EPIDEMIOLOGICAL ICEBERG. X Gu, B Mukherjee, S Das, J Datta MedRxiv, 2021 | 11 | 2021 |
Improving spatial visualization abilities using 3D printed blocks V LeBow, M Bernhardt-Barry, J Datta | 10 | 2018 |