On the linear convergence of the ADMM in decentralized consensus optimization W Shi, Q Ling, K Yuan, G Wu, W Yin IEEE Transactions on Signal Processing 62 (7), 1750-1761, 2014 | 912 | 2014 |
On the convergence of decentralized gradient descent K Yuan, Q Ling, W Yin SIAM Journal on Optimization 26 (3), 1835-1854, 2016 | 737 | 2016 |
Exact diffusion for distributed optimization and learning—Part I: Algorithm development K Yuan, B Ying, X Zhao, AH Sayed IEEE Transactions on Signal Processing 67 (3), 708-723, 2019 | 228 | 2019 |
Decentralized consensus optimization with asynchrony and delays T Wu, K Yuan, Q Ling, W Yin, AH Sayed IEEE Transactions on Signal and Information Processing over Networks 4 (2 …, 2017 | 154 | 2017 |
Decentralized proximal gradient algorithms with linear convergence rates SA Alghunaim, EK Ryu, K Yuan, AH Sayed IEEE Transactions on Automatic Control 66 (6), 2787-2794, 2020 | 123 | 2020 |
Variance-reduced stochastic learning by networked agents under random reshuffling K Yuan, B Ying, J Liu, AH Sayed IEEE Transactions on Signal Processing 67 (2), 351-366, 2019 | 101* | 2019 |
Exact diffusion for distributed optimization and learning—Part II: Convergence analysis K Yuan, B Ying, X Zhao, AH Sayed IEEE Transactions on Signal Processing 67 (3), 724-739, 2019 | 93 | 2019 |
A linearly convergent proximal gradient algorithm for decentralized optimization S Alghunaim, K Yuan, AH Sayed Advances in Neural Information Processing Systems 32, 2019 | 75 | 2019 |
Walkman: A communication-efficient random-walk algorithm for decentralized optimization X Mao, K Yuan, Y Hu, Y Gu, AH Sayed, W Yin IEEE Transactions on Signal Processing 68, 2513-2528, 2020 | 70 | 2020 |
Exponential Graph is Provably Efficient for Decentralized Deep Training B Ying*, K Yuan*, Y Chen*, H Hu, P Pan, W Yin NeurIPS 2021 - 35th Conference on Neural Information Processing Systems, 2021 | 68 | 2021 |
CHEX: CHannel EXploration for CNN Model Compression Z Hou, M Qin, F Sun, X Ma, K Yuan, Y Xu, YK Chen, R Jin, Y Xie, SY Kung CVPR 2022 - IEEE/CVF Computer Vision and Pattern Recognition Conference, 2022 | 65 | 2022 |
On the influence of momentum acceleration on online learning K Yuan, B Ying, AH Sayed Journal of Machine Learning Research 17 (192), 1-66, 2016 | 63 | 2016 |
Supervised learning under distributed features B Ying, K Yuan, AH Sayed IEEE Transactions on Signal Processing 67 (4), 977-992, 2018 | 55 | 2018 |
DecentLaM: Decentralized Momentum SGD for Large-batch Deep Training K Yuan*, Y Chen*, X Huang*, Y Zhang, P Pan, Y Xu, W Yin ICCV 2021 - International Conference on Computer Vision, 2021 | 53 | 2021 |
On the Influence of Bias-Correction on Distributed Stochastic Optimization K Yuan, SA Alghunaim, B Ying, AH Sayed IEEE Transactions on Signal Processing 68, 4352 - 4367, 2020 | 53 | 2020 |
A proximal diffusion strategy for multiagent optimization with sparse affine constraints SA Alghunaim, K Yuan, AH Sayed IEEE Transactions on Automatic Control 65 (11), 4554-4567, 2019 | 49 | 2019 |
A unified and refined convergence analysis for non-convex decentralized learning SA Alghunaim, K Yuan IEEE Transactions on Signal Processing 70, 3264-3279, 2022 | 44 | 2022 |
Accelerating Gossip SGD with Periodic Global Averaging Y Chen*, K Yuan*, Y Zhang, P Pan, Y Xu, W Yin ICML 2021 - International Conference on Machine Learning, 2021 | 39 | 2021 |
Multiagent fully decentralized value function learning with linear convergence rates L Cassano, K Yuan, AH Sayed IEEE Transactions on Automatic Control 66 (4), 1497-1512, 2020 | 39 | 2020 |
Stochastic gradient descent with finite samples sizes K Yuan, B Ying, S Vlaski, AH Sayed 2016 IEEE 26th International Workshop on Machine Learning for Signal …, 2016 | 39 | 2016 |