Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability L Drumetz, MA Veganzones, S Henrot, R Phlypo, J Chanussot, C Jutten IEEE Transactions on Image Processing 25 (8), 3890-3905, 2016 | 244 | 2016 |
Spectral variability in hyperspectral data unmixing: A comprehensive review RA Borsoi, T Imbiriba, JCM Bermudez, C Richard, J Chanussot, ... IEEE geoscience and remote sensing magazine 9 (4), 223-270, 2021 | 174 | 2021 |
A new extended linear mixing model to address spectral variability MA Veganzones, L Drumetz, G Tochon, M Dalla Mura, A Plaza, ... 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in …, 2014 | 92 | 2014 |
Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms L Drumetz, TR Meyer, J Chanussot, AL Bertozzi, C Jutten IEEE Transactions on Image Processing 28 (7), 3435-3450, 2019 | 87 | 2019 |
Learning variational data assimilation models and solvers R Fablet, B Chapron, L Drumetz, E Mémin, O Pannekoucke, F Rousseau Journal of Advances in Modeling Earth Systems 13 (10), e2021MS002572, 2021 | 68 | 2021 |
Residual networks as flows of diffeomorphisms F Rousseau, L Drumetz, R Fablet Journal of Mathematical Imaging and Vision 62, 365-375, 2020 | 60 | 2020 |
Learning latent dynamics for partially observed chaotic systems S Ouala, D Nguyen, L Drumetz, B Chapron, A Pascual, F Collard, ... Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (10), 2020 | 53 | 2020 |
Variability of the endmembers in spectral unmixing: Recent advances L Drumetz, J Chanussot, C Jutten 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in …, 2016 | 50* | 2016 |
Em-like learning chaotic dynamics from noisy and partial observations D Nguyen, S Ouala, L Drumetz, R Fablet arXiv preprint arXiv:1903.10335, 2019 | 43 | 2019 |
Spectral variability aware blind hyperspectral image unmixing based on convex geometry L Drumetz, J Chanussot, C Jutten, WK Ma, A Iwasaki IEEE Transactions on Image Processing 29, 4568-4582, 2020 | 39 | 2020 |
Hyperspectral classification through unmixing abundance maps addressing spectral variability E Ibarrola-Ulzurrun, L Drumetz, J Marcello, C Gonzalo-Martín, ... IEEE Transactions on Geoscience and Remote Sensing 57 (7), 4775-4788, 2019 | 38 | 2019 |
Spherical sliced-wasserstein C Bonet, P Berg, N Courty, F Septier, L Drumetz, MT Pham Twelfth International Conference on Learning Representations, 2022 | 32 | 2022 |
Efficient gradient flows in sliced-Wasserstein space C Bonet, N Courty, F Septier, L Drumetz arXiv preprint arXiv:2110.10972, 2021 | 32* | 2021 |
Blind hyperspectral unmixing based on graph total variation regularization J Qin, H Lee, JT Chi, L Drumetz, J Chanussot, Y Lou, AL Bertozzi IEEE Transactions on Geoscience and Remote Sensing 59 (4), 3338-3351, 2020 | 32 | 2020 |
Spectral unmixing: A derivation of the extended linear mixing model from the Hapke model L Drumetz, J Chanussot, C Jutten IEEE Geoscience and Remote Sensing Letters 17 (11), 1866-1870, 2019 | 30 | 2019 |
Hyperspectral unmixing with material variability using social sparsity TR Meyer, L Drumetz, J Chanussot, AL Bertozzi, C Jutten 2016 IEEE International Conference on Image Processing (ICIP), 2187-2191, 2016 | 20 | 2016 |
Joint interpolation and representation learning for irregularly sampled satellite-derived geophysical fields R Fablet, M Beauchamp, L Drumetz, F Rousseau Frontiers in Applied Mathematics and Statistics 7, 655224, 2021 | 18 | 2021 |
Variational deep learning for the identification and reconstruction of chaotic and stochastic dynamical systems from noisy and partial observations D Nguyen, S Ouala, L Drumetz, R Fablet arXiv preprint arXiv:2009.02296, 2020 | 16 | 2020 |
Joint learning of variational representations and solvers for inverse problems with partially-observed data R Fablet, L Drumetz, F Rousseau arXiv preprint arXiv:2006.03653, 2020 | 16 | 2020 |
Sliced-Wasserstein on symmetric positive definite matrices for M/EEG signals C Bonet, B Malézieux, A Rakotomamonjy, L Drumetz, T Moreau, ... International Conference on Machine Learning, 2777-2805, 2023 | 15 | 2023 |