Gaussian Processes for Machine Learning CE Rasmussen, CKI Williams MIT Press, 2006 | 33864 | 2006 |
The infinite hidden Markov model MJ Beal, Z Ghahramani, CE Rasmussen Advances in neural information processing systems 14, 577-584, 2002 | 2693* | 2002 |
A unifying view of sparse approximate Gaussian process regression J Quiñonero-Candela, CE Rasmussen The Journal of Machine Learning Research 6, 1939-1959, 2005 | 2498 | 2005 |
PILCO: A model-based and data-efficient approach to policy search M Deisenroth, CE Rasmussen Proceedings of the 28th International Conference on Machine Learning (ICML …, 2011 | 1941 | 2011 |
Gaussian processes for regression CKI Williams, CE Rasmussen Advances in Neural Processing Systems 8, 514 - 520, 1996 | 1841 | 1996 |
The infinite Gaussian mixture model CE Rasmussen Advances in neural information processing systems 12, 554-560, 2000 | 1814 | 2000 |
Gaussian processes for machine learning (GPML) toolbox CE Rasmussen, H Nickisch The Journal of Machine Learning Research 11, 3011-3015, 2010 | 1226 | 2010 |
Gaussian Processes for Data-Efficient Learning in Robotics and Control M Deisenroth, D Fox, C Rasmussen IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 408-423, 2015 | 828 | 2015 |
Evaluation of Gaussian processes and other methods for non-linear regression CE Rasmussen University of Toronto, 1996 | 667 | 1996 |
Infinite mixtures of Gaussian process experts CE Rasmussen, Z Ghahramani Advances in neural information processing systems 14 2, 881-888, 2002 | 664 | 2002 |
Gaussian Process priors with uncertain inputs - Application to multiple-step ahead time series forecasting A Girard, CE Rasmussen, J Quinonero-Candela, R Murray-Smith MIT Press, 2003 | 645* | 2003 |
Sparse spectrum Gaussian process regression M Lázaro-Gredilla, J Quiñonero-Candela, CE Rasmussen, ... The Journal of Machine Learning Research 11, 1865-1881, 2010 | 580 | 2010 |
Gaussian process priors with uncertain inputs: Multiple-step ahead prediction A Girard, CE Rasmussen, R Murray-Smith Delovno porocilo DCS TR-2002-119, University of Glasgow, Glasgow, 2002 | 572* | 2002 |
Approximations for binary Gaussian process classification H Nickisch, CE Rasmussen Journal of Machine Learning Research 9, 2035-2078, 2008 | 486 | 2008 |
Warped Gaussian processes E Snelson, CE Rasmussen, Z Ghahramani Advances in neural information processing systems 16, 337-344, 2004 | 455 | 2004 |
Assessing approximate inference for binary Gaussian process classification M Kuss, CE Rasmussen The Journal of Machine Learning Research 6, 1679-1704, 2005 | 413 | 2005 |
Additive Gaussian Processes D Duvenaud, H Nickisch, CE Rasmussen Neural Information Processing Systems 24, 226-234, 2012 | 412 | 2012 |
Derivative observations in Gaussian process models of dynamic systems E Solak, R Murray-Smith, WE Leithead, DJ Leith, CE Rasmussen MIT Press, 2003 | 409 | 2003 |
Occam's razor CE Rasmussen, Z Ghahramani Advances in neural information processing systems, 294-300, 2001 | 396 | 2001 |
Bayesian monte Carlo CE Rasmussen, Z Ghahramani Advances in neural information processing systems 15, 489-496, 2003 | 369* | 2003 |