关注
Adrian Riekert
Adrian Riekert
在 uni-muenster.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions
P Cheridito, A Jentzen, A Riekert, F Rossmannek
Journal of Complexity 72, 101646, 2022
292022
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
A Jentzen, A Riekert
Zeitschrift für angewandte Mathematik und Physik 73 (5), 188, 2022
232022
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
A Jentzen, A Riekert
Journal of Mathematical Analysis and Applications 517 (2), 126601, 2023
222023
On the existence of global minima and convergence analyses for gradient descent methods in the training of deep neural networks
A Jentzen, A Riekert
arXiv preprint arXiv:2112.09684, 2021
212021
Existence, uniqueness, and convergence rates for gradient flows in the training of artificial neural networks with ReLU activation
S Eberle, A Jentzen, A Riekert, GS Weiss
arXiv preprint arXiv:2108.08106, 2021
212021
A proof of convergence for the gradient descent optimization method with random initializations in the training of neural networks with ReLU activation for piecewise linear …
A Jentzen, A Riekert
Journal of Machine Learning Research 23 (260), 1-50, 2022
192022
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
M Hutzenthaler, A Jentzen, K Pohl, A Riekert, L Scarpa
arXiv preprint arXiv:2112.07369, 2021
112021
Convergence to good non-optimal critical points in the training of neural networks: Gradient descent optimization with one random initialization overcomes all bad non-global …
S Ibragimov, A Jentzen, A Riekert
arXiv preprint arXiv:2212.13111, 2022
92022
Convergence rates for empirical measures of Markov chains in dual and Wasserstein distances
A Riekert
Statistics & Probability Letters 189, 109605, 2022
8*2022
On the existence of infinitely many realization functions of non-global local minima in the training of artificial neural networks with ReLU activation
S Ibragimov, A Jentzen, T Kröger, A Riekert
arXiv preprint arXiv:2202.11481, 2022
62022
Strong overall error analysis for the training of artificial neural networks via random initializations
A Jentzen, A Riekert
Communications in Mathematics and Statistics, 1-50, 2023
52023
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
A Jentzen, A Riekert
arXiv preprint arXiv:2402.05155, 2024
32024
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
A Jentzen, A Riekert, P von Wurstemberger
arXiv preprint arXiv:2302.03286, 2023
32023
Learning rate adaptive stochastic gradient descent optimization methods: numerical simulations for deep learning methods for partial differential equations and convergence analyses
S Dereich, A Jentzen, A Riekert
arXiv preprint arXiv:2406.14340, 2024
22024
Normalized gradient flow optimization in the training of ReLU artificial neural networks
S Eberle, A Jentzen, A Riekert, G Weiss
arXiv preprint arXiv:2207.06246, 2022
22022
Deep neural network approximation of composite functions without the curse of dimensionality
A Riekert
arXiv preprint arXiv:2304.05790, 2023
12023
An Overview on Machine Learning Methods for Partial Differential Equations: from Physics Informed Neural Networks to Deep Operator Learning
L Gonon, A Jentzen, B Kuckuck, S Liang, A Riekert, P von Wurstemberger
arXiv preprint arXiv:2408.13222, 2024
2024
A proof of the corrected Sister Beiter cyclotomic coefficient conjecture inspired by Zhao and Zhang
B Juran, P Moree, A Riekert, D Schmitz, J Völlmecke
arXiv preprint arXiv:2304.09250, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–18