Learning shape reconstruction from sparse measurements with neural implicit functions T Amiranashvili, D Lüdke, HB Li, B Menze, S Zachow International Conference on Medical Imaging with Deep Learning, 22-34, 2022 | 23 | 2022 |
From zero to turbulence: Generative modeling for 3d flow simulation M Lienen, D Lüdke, J Hansen-Palmus, S Günnemann arXiv preprint arXiv:2306.01776, 2023 | 18* | 2023 |
Landmark-free statistical shape modeling via neural flow deformations D Lüdke, T Amiranashvili, F Ambellan, I Ezhov, BH Menze, S Zachow International Conference on Medical Image Computing and Computer-Assisted …, 2022 | 16 | 2022 |
A multi-task deep learning method for detection of meniscal tears in MRI data from the osteoarthritis initiative database A Tack, A Shestakov, D Lüdke, S Zachow Frontiers in Bioengineering and Biotechnology 9, 747217, 2021 | 16 | 2021 |
Add and Thin: Diffusion for Temporal Point Processes D Lüdke, M Biloš, O Shchur, M Lienen, S Günnemann Neural Information Processing Systems (NeurIPS), 2023 | 6 | 2023 |
Learning continuous shape priors from sparse data with neural implicit functions T Amiranashvili, D Lüdke, HB Li, S Zachow, BH Menze Medical Image Analysis 94, 103099, 2024 | 4 | 2024 |
The power of motifs as inductive bias for learning molecular distributions J Sommer, L Hetzel, D Lüdke, F Theis, S Günnemann arXiv preprint arXiv:2306.17246, 2023 | 2 | 2023 |
Neural flow-based deformations for statistical shape modelling D Lüdke Universitätsbibliothek Johann Christian Senckenberg, 2022 | 1 | 2022 |