关注
Hristos Tyralis
Hristos Tyralis
Hellenic Air Force
在 hydro.ntua.gr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Twenty-three Unsolved Problems in Hydrology (UPH)–a community perspective
G Blöschl, MFP Bierkens, A Chambel, C Cudennec, G Destouni, A Fiori, ...
Hydrological Sciences Journal 64 (10), 1141-1158, 2019
6932019
A brief review of random forests for water scientists and practitioners and their recent history in water resources
H Tyralis, G Papacharalampous, A Langousis
Water 11 (5), 910, 2019
479*2019
Variable selection in time series forecasting using random forests
H Tyralis, G Papacharalampous
Algorithms 10 (4), 114, 2017
1932017
Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
G Papacharalampous, H Tyralis, D Koutsoyiannis
Stochastic Environmental Research and Risk Assessment 33 (2), 481-514, 2019
1502019
Predictability of monthly temperature and precipitation using automatic time series forecasting methods
G Papacharalampous, H Tyralis, D Koutsoyiannis
Acta Geophysica 66 (4), 807-831, 2018
1362018
Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms
H Tyralis, G Papacharalampous, A Langousis
Neural Computing and Applications 33 (8), 3053-3068, 2021
1292021
Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process
H Tyralis, D Koutsoyiannis
Stochastic Environmental Research and Risk Assessment 25 (1), 21-33, 2011
1002011
Evaluation of random forests and Prophet for daily streamflow forecasting
G Papacharalampous, H Tyralis
Advances in Geosciences 45, 201-208, 2018
90*2018
Hydrological post-processing using stacked generalization of quantile regression algorithms: Large-scale application over CONUS
H Tyralis, G Papacharalampous, A Burnetas, A Langousis
Journal of Hydrology 577, 123957, 2019
832019
Univariate time series forecasting of temperature and precipitation with a focus on machine learning algorithms: A multiple-case study from Greece
G Papacharalampous, H Tyralis, D Koutsoyiannis
Water Resources Management 32 (15), 5207-5239, 2018
752018
Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms
G Papacharalampous, H Tyralis, A Langousis, AW Jayawardena, ...
Water 11 (10), 2126, 2019
592019
Accuracy measurement of random forests and linear regression for mass appraisal models that estimate the prices of residential apartments in Nicosia, Cyprus
T Dimopoulos, H Tyralis, NP Bakas, D Hadjimitsis
Advances in Geosciences 45, 377-382, 2018
532018
How to explain and predict the shape parameter of the generalized extreme value distribution of streamflow extremes using a big dataset
H Tyralis, G Papacharalampous, S Tantanee
Journal of Hydrology 574, 628-645, 2019
512019
A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables
H Tyralis, D Koutsoyiannis
Climate Dynamics 42 (11-12), 2867-2883, 2014
482014
Boosting algorithms in energy research: A systematic review
H Tyralis, G Papacharalampous
Neural Computing and Applications 33 (21), 14101-14117, 2021
462021
On the long-range dependence properties of annual precipitation using a global network of instrumental measurements
H Tyralis, P Dimitriadis, D Koutsoyiannis, PE O'Connell, K Tzouka, ...
Advances in Water Resources 111, 301-318, 2018
452018
One-step ahead forecasting of geophysical processes within a purely statistical framework
G Papacharalampous, H Tyralis, D Koutsoyiannis
Geoscience Letters 5 (12), 2018
44*2018
Global-scale massive feature extraction from monthly hydroclimatic time series: Statistical characterizations, spatial patterns and hydrological similarity
G Papacharalampous, H Tyralis, SM Papalexiou, A Langousis, S Khatami, ...
Science of the Total Environment 767, 144612, 2021
402021
HKprocess: Hurst-Kolmogorov process. R package version 0.1-1
H Tyralis
https://CRAN.R-project.org/package=HKprocess, 2022
38*2022
Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale
G Papacharalampous, H Tyralis, D Koutsoyiannis, A Montanari
Advances in Water Resources 136, 103470, 2020
382020
系统目前无法执行此操作,请稍后再试。
文章 1–20