Quantitative stochastic homogenization and large-scale regularity S Armstrong, T Kuusi, JC Mourrat Springer, 2019 | 236 | 2019 |
Quantitative stochastic homogenization of convex integral functionals SN Armstrong, CK Smart Annales scientifiques de l'Ecole normale supérieure 49 (2), 423-481, 2016 | 216 | 2016 |
An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions SN Armstrong, CK Smart Calculus of Variations and Partial Differential Equations 37 (3), 381-384, 2010 | 142 | 2010 |
Lipschitz regularity for elliptic equations with random coefficients SN Armstrong, JC Mourrat Archive for Rational Mechanics and Analysis 219, 255-348, 2016 | 121 | 2016 |
The additive structure of elliptic homogenization S Armstrong, T Kuusi, JC Mourrat Inventiones mathematicae 208 (3), 999-1154, 2017 | 120 | 2017 |
Nonexistence of positive supersolutions of elliptic equations via the maximum principle SN Armstrong, B Sirakov Communications in Partial Differential Equations 36 (11), 2011-2047, 2011 | 107 | 2011 |
Lipschitz estimates in almost‐periodic homogenization SN Armstrong, Z Shen Communications on pure and applied mathematics 69 (10), 1882-1923, 2016 | 102 | 2016 |
Variational methods for the kinetic Fokker-Planck equation D Albritton, S Armstrong, JC Mourrat, M Novack arXiv preprint arXiv:1902.04037, 2019 | 85* | 2019 |
A finite difference approach to the infinity Laplace equation and tug-of-war games SN Armstrong, CK Smart | 84 | 2009 |
Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations in unbounded environments SN Armstrong, PE Souganidis Journal de Mathématiques Pures et Appliquées, 2011 | 83 | 2011 |
Mesoscopic higher regularity and subadditivity in elliptic homogenization S Armstrong, T Kuusi, JC Mourrat Communications in Mathematical Physics 347, 315-361, 2016 | 80 | 2016 |
Stochastic homogenization of level-set convex Hamilton–Jacobi equations SN Armstrong, PE Souganidis International Mathematics Research Notices 2013 (15), 3420-3449, 2013 | 73 | 2013 |
Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations SN Armstrong Journal of Differential Equations 246 (7), 2958-2987, 2009 | 72 | 2009 |
Elliptic regularity and quantitative homogenization on percolation clusters S Armstrong, P Dario Communications on Pure and Applied Mathematics 71 (9), 1717-1849, 2018 | 65 | 2018 |
Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions S Armstrong, P Cardaliaguet Journal of the European Mathematical Society 20 (4), 797-864, 2018 | 62 | 2018 |
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations S Armstrong, P Cardaliaguet, P Souganidis Journal of the American Mathematical Society 27 (2), 479-540, 2014 | 61 | 2014 |
Viscosity solutions of general viscous Hamilton–Jacobi equations SN Armstrong, HV Tran Mathematische Annalen 361, 647-687, 2015 | 56 | 2015 |
Quantitative stochastic homogenization of elliptic equations in nondivergence form SN Armstrong, CK Smart arXiv preprint arXiv:1306.5340, 2013 | 56 | 2013 |
Partial regularity of solutions of fully nonlinear uniformly elliptic equations SN Armstrong, L Silvestre, CK Smart Arxiv preprint arXiv:1103.3677, 2011 | 53 | 2011 |
Fundamental solutions of homogeneous fully nonlinear elliptic equations SN Armstrong, CK Smart, B Sirakov Communications on Pure and Applied Mathematics, 2009 | 52 | 2009 |