Graph Structure Learning for Robust Graph Neural Networks W Jin, Y Ma, X Liu, X Tang, S Wang, J Tang KDD 2020, 2020 | 578 | 2020 |
Traffic flow prediction via spatial temporal graph neural network X Wang, Y Ma, Y Wang, W Jin, X Wang, J Tang, C Jia, J Yu Proceedings of the web conference 2020, 1082-1092, 2020 | 491 | 2020 |
Adversarial attacks and defenses on graphs W Jin, Y Li, H Xu, Y Wang, S Ji, C Aggarwal, J Tang ACM SIGKDD Explorations Newsletter 22 (2), 19-34, 2021 | 273* | 2021 |
Node Similarity Preserving Graph Convolutional Networks W Jin, T Derr, Y Wang, Y Ma, Z Liu, J Tang International Conference on Web Search and Data Mining (WSDM), 2021 | 218 | 2021 |
Self-supervised learning on graphs: Deep insights and new direction W Jin, T Derr, H Liu, Y Wang, S Wang, Z Liu, J Tang The Web Conference (WWW 2021) Workshop: Self-Supervised Learning for the Web, 2021 | 204 | 2021 |
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness L Zhao, W Jin, L Akoglu, N Shah International Conference on Learning Representations (ICLR), 2022 | 148 | 2022 |
Exploring the potential of large language models (llms) in learning on graphs Z Chen, H Mao, H Li, W Jin, H Wen, X Wei, S Wang, D Yin, W Fan, H Liu, ... SIGKDD Explorations, 2023 | 138 | 2023 |
Deeprobust: A pytorch library for adversarial attacks and defenses Y Li*, W Jin*, H Xu, J Tang arXiv preprint arXiv:2005.06149, 2020 | 128 | 2020 |
Graph Condensation for Graph Neural Networks W Jin, L Zhao, S Zhang, Y Liu, J Tang, N Shah International Conference on Learning Representations (ICLR), 2022 | 122 | 2022 |
Elastic graph neural networks X Liu*, W Jin*, Y Ma, Y Li, H Liu, Y Wang, M Yan, J Tang International Conference on Machine Learning (ICML), 6837-6849, 2021 | 109 | 2021 |
Graph Data Augmentation for Graph Machine Learning: A Survey T Zhao, W Jin, Y Wang, G Liu, Y Liu, S Gunnemann, N Shah, M Jiang IEEE Data Engineering Bulletin (DEBULL), 2023 | 94 | 2023 |
Graph trend filtering networks for recommendation W Fan, X Liu, W Jin, X Zhao, J Tang, Q Li Proceedings of the 45th international ACM SIGIR conference on research and …, 2022 | 81 | 2022 |
Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels E Dai, W Jin, H Liu, S Wang WSDM 2022, 2022 | 81 | 2022 |
Condensing Graphs via One-Step Gradient Matching W Jin, X Tang, H Jiang, Z Li, D Zhang, J Tang, B Yin KDD 2022, 2022 | 78 | 2022 |
Automated self-supervised learning for graphs W Jin, X Liu, X Zhao, Y Ma, N Shah, J Tang International Conference on Learning Representations (ICLR), 2022 | 69 | 2022 |
Graph neural networks with adaptive residual X Liu, J Ding, W Jin, H Xu, Y Ma, Z Liu, J Tang NeurIPS 2021, 2021 | 53 | 2021 |
Empowering graph representation learning with test-time graph transformation W Jin, T Zhao, J Ding, Y Liu, J Tang, N Shah ICLR 2023, 2022 | 50 | 2022 |
Graph Neural Networks for Multimodal Single-Cell Data Integration H Wen*, J Ding*, W Jin*, Y Wang*, Y Xie, J Tang KDD 2022, 2022 | 43 | 2022 |
Deeprobust: a platform for adversarial attacks and defenses Y Li*, W Jin*, H Xu, J Tang Proceedings of the AAAI Conference on Artificial Intelligence 35 (18), 16078 …, 2021 | 36 | 2021 |
Feature overcorrelation in deep graph neural networks: A new perspective W Jin, X Liu, Y Ma, C Aggarwal, J Tang KDD 2022, 2022 | 34 | 2022 |