关注
Rik Vaerenberg
Rik Vaerenberg
在 kuleuven.be 的电子邮件经过验证
标题
引用次数
引用次数
年份
Predicting pitting severity in gearboxes under unseen operating conditions and fault severities using convolutional neural networks with power spectral density inputs
R Vaerenberg, D Marx, SA Hosseinli, DF Fabrizio, H Wen, R Zhu, ...
Annual Conference of the PHM Society 15 (1), 2023
12023
Transforming gradient-based sensitivity maps for bearing CM
J Tulleners, R Vaerenberg, K Gryllias
Flanders AI Research Day 24, Location: Gent, 2024
2024
Transforming explainable AI attribution maps from input domain to interpretable domains
R Vaerenberg, J Tulleners, K Gryllias
Leuven. AI scientific workshop 2024, Location: Leuven, 2024
2024
A Preprocessing and Modeling Approach for Gearbox Pitting Severity Prediction under Unseen Operating Conditions and Fault Severities
R Vaerenberg, D Marx, SA Hosseinli, F De Fabritiis, H Wen, R Zhu, ...
International Journal of Prognostics and Health Management 15 (1), 2024
2024
Quantification of bias in anomaly detection due to mismatched labeled anomalies
R Vaerenberg, K Gryllias
Conference on Machine, Vehicle and Production Technologies (CMVPT), Location …, 2024
2024
Context Aware Anomaly Detection for Condition Monitoring of Rolling Element Bearings
R Vaerenberg, K Gryllias
International conference on the Efficiency and Performance Engineering …, 2023
2023
Context aware anomaly detection with multi-sphere DeepSVD
R Vaerenberg
Conference for Machines, Vehicles and Production Technology (CMVPT …, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–7