关注
Philipp Borchert
Philipp Borchert
PhD Researcher at IESEG School of Management and KU Leuven
在 ieseg.fr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Extending business failure prediction models with textual website content using deep learning
P Borchert, K Coussement, A De Caigny, J De Weerdt
European Journal of Operational Research 306 (1), 348-357, 2023
292023
Investigating Bias in Multilingual Language Models: Cross-Lingual Transfer of Debiasing Techniques
M Reusens, P Borchert, M Mieskes, J De Weerdt, B Baesens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023
32023
Industry-sensitive language modeling for business
P Borchert, K Coussement, J De Weerdt, A De Caigny
European Journal of Operational Research 315 (2), 691-702, 2024
12024
SEER: A Knapsack approach to Exemplar Selection for In-Context HybridQA
J Tonglet, M Reusens, P Borchert, B Baesens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023
12023
Native Design Bias: Studying the Impact of English Nativeness on Language Model Performance
M Reusens, P Borchert, J De Weerdt, B Baesens
arXiv preprint arXiv:2406.17385, 2024
2024
Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages
FD Schmidt, P Borchert, I Vulić, G Glavaš
arXiv preprint arXiv:2406.12739, 2024
2024
Unraveling Key Information in Textual Earnings Disclosures
P Borchert, J De Weerdt, K Coussement, A De Caigny
Available at SSRN 4816174, 2024
2024
Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning
P Borchert, J De Weerdt, MF Moens
arXiv preprint arXiv:2403.16543, 2024
2024
CORE: A Few-Shot Company Relation Classification Dataset for Robust Domain Adaptation
P Borchert, J De Weerdt, K Coussement, A De Caigny, MF Moens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–9