Generalized multimodal ELBO TM Sutter, I Daunhawer, JE Vogt arXiv preprint arXiv:2105.02470, 2021 | 86 | 2021 |
Multimodal Learning Utilizing Jensen-Shannon Divergence TM Sutter, I Daunhawer, JE Vogt Advances in Neural Information Processing Systems 33 pre-proceedings …, 2020 | 72* | 2020 |
Generation of Heterogeneous Synthetic Electronic Health Records using GANs K Chin-Cheong, TM Sutter, JE Vogt Workshop on Machine Learning for Health (ML4H) at the 33rd Conference on …, 2019 | 36 | 2019 |
On the limitations of multimodal vaes I Daunhawer, TM Sutter, K Chin-Cheong, E Palumbo, JE Vogt arXiv preprint arXiv:2110.04121, 2021 | 32 | 2021 |
Self-supervised disentanglement of modality-specific and shared factors improves multimodal generative models I Daunhawer, TM Sutter, R Marcinkevičs, JE Vogt Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen …, 2021 | 28 | 2021 |
Machine learning algorithms evaluate immune response to novel Mycobacterium tuberculosis antigens for diagnosis of tuberculosis NR Meier, N Ritz, TM Sutter, JE Vogt, THM Ottenhoff, M Jacobsen Frontiers in Cellular and Infection Microbiology 10, 821, 2020 | 14 | 2020 |
A comparison of general and disease-specific machine learning models for the prediction of unplanned hospital readmissions TM Sutter, JA Roth, K Chin-Cheong, BL Hug, JE Vogt Journal of the American Medical Informatics Association, 2020 | 10 | 2020 |
Generation of differentially private heterogeneous electronic health records K Chin-Cheong, T Sutter, JE Vogt arXiv preprint arXiv:2006.03423, 2020 | 9 | 2020 |
Camera based visibility estimation T Sutter, F Nater, C Sigg Proceedings TECO–2016 (technical conference on meteorological and …, 2016 | 9 | 2016 |
Learning Group Importance using the Differentiable Hypergeometric Distribution TM Sutter, L Manduchi, A Ryser, JE Vogt The Eleventh International Conference on Learning Representations, 2023 | 6 | 2023 |
Self-supervised Learning to Predict Ejection Fraction using Motion-mode Images Y Hu, TM Sutter, E Ozkan, JE Vogt 2023 ICLR First Workshop on {\textquotedblleft} Machine Learning {\&} Global …, 2023 | 3 | 2023 |
Differentiable Random Partition Models TM Sutter, A Ryser, J Liebeskind, JE Vogt arXiv preprint arXiv:2305.16841, 2023 | 2 | 2023 |
M (otion)-mode Based Prediction of Cardiac Function on Echocardiograms TM Sutter, S Balzer, E Oezkan, JE Vogt ETH Zurich, 2022 | 2 | 2022 |
Multimodal Relational VAE TM Sutter, JE Vogt Neurips Workshop on Bayesian Deep Learning, 2021 | 2 | 2021 |
Unity by Diversity: Improved Representation Learning in Multimodal VAEs TM Sutter, Y Meng, N Fortin, JE Vogt, S Mandt arXiv preprint arXiv:2403.05300, 2024 | 1 | 2024 |
Imposing and Uncovering Group Structure in Weakly-Supervised Learning TM Sutter ETH Zurich, 2023 | 1 | 2023 |
Evaluation of serological assays for the diagnosis of childhood tuberculosis disease: a study protocol D Neudecker, N Fritisch, T Sutter, L Lu, P Lu, M Tebruegge, ... BMC Infectious Diseases 24 (1), 1-10, 2024 | | 2024 |
Anomaly Detection by Context Contrasting A Ryser, TM Sutter, A Marx, JE Vogt arXiv preprint arXiv:2405.18848, 2024 | | 2024 |
PO-01-097 USING GENERATIVE AI TO REDUCE NOISE IN ELECTROPHYSIOLOGICAL SIGNALS: OUTPERFORMING STATE-OF-THE-ART FILTERS S Ruiperez-Campillo, TM Sutter, A Ryser, R Feng, P Ganesan, K Brennan, ... Heart Rhythm 21 (5), S212-S213, 2024 | | 2024 |
M (otion)-Mode Based Prediction of Ejection Fraction Using Echocardiograms E Ozkan, TM Sutter, Y Hu, S Balzer, JE Vogt DAGM German Conference on Pattern Recognition, 307-320, 2023 | | 2023 |