On the computation of counterfactual explanations--A survey A Artelt, B Hammer arXiv preprint arXiv:1911.07749, 2019 | 72 | 2019 |
Convex density constraints for computing plausible counterfactual explanations A Artelt, B Hammer Artificial Neural Networks and Machine Learning–ICANN 2020: 29th …, 2020 | 48 | 2020 |
Evaluating robustness of counterfactual explanations A Artelt, V Vaquet, R Velioglu, F Hinder, J Brinkrolf, M Schilling, ... 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01-09, 2021 | 42 | 2021 |
Towards non-parametric drift detection via dynamic adapting window independence drift detection (dawidd) F Hinder, A Artelt, B Hammer International Conference on Machine Learning, 4249-4259, 2020 | 33 | 2020 |
CEML-counterfactuals for explaining machine learning models-a python toolbox A Artelt | 18 | 2019 |
Keep your friends close and your counterfactuals closer: Improved learning from closest rather than plausible counterfactual explanations in an abstract setting U Kuhl, A Artelt, B Hammer Proceedings of the 2022 ACM Conference on Fairness, Accountability, and …, 2022 | 17 | 2022 |
Efficient computation of counterfactual explanations of LVQ models A Artelt, B Hammer arXiv preprint arXiv:1908.00735, 2019 | 17 | 2019 |
Adversarial attacks hidden in plain sight JP Göpfert, A Artelt, H Wersing, B Hammer Advances in Intelligent Data Analysis XVIII: 18th International Symposium on …, 2020 | 15 | 2020 |
Let's go to the Alien Zoo: Introducing an experimental framework to study usability of counterfactual explanations for machine learning U Kuhl, A Artelt, B Hammer Frontiers in Computer Science 5, 1087929, 2023 | 12 | 2023 |
Efficient computation of contrastive explanations A Artelt, B Hammer 2021 International Joint Conference on Neural Networks (IJCNN), 1-9, 2021 | 10 | 2021 |
Convex optimization for actionable\& plausible counterfactual explanations A Artelt, B Hammer arXiv preprint arXiv:2105.07630, 2021 | 10 | 2021 |
Efficient computation of counterfactual explanations and counterfactual metrics of prototype-based classifiers A Artelt, B Hammer Neurocomputing 470, 304-317, 2022 | 9 | 2022 |
Contrasting Explanation of Concept Drift. F Hinder, A Artelt, V Vaquet, B Hammer ESANN, 2022 | 9 | 2022 |
Contrastive explanations for explaining model adaptations A Artelt, F Hinder, V Vaquet, R Feldhans, B Hammer International Work-Conference on Artificial Neural Networks, 101-112, 2021 | 7 | 2021 |
“Even if…”–Diverse Semifactual Explanations of Reject A Artelt, B Hammer 2022 IEEE Symposium Series on Computational Intelligence (SSCI), 854-859, 2022 | 6 | 2022 |
Taking care of our drinking water: dealing with sensor faults in water distribution networks V Vaquet, A Artelt, J Brinkrolf, B Hammer International Conference on Artificial Neural Networks, 682-693, 2022 | 6 | 2022 |
A probability theoretic approach to drifting data in continuous time domains F Hinder, A Artelt, B Hammer arXiv preprint arXiv:1912.01969, 2019 | 6 | 2019 |
KI-basierte Sprachassistenten im Alltag: Forschungsbedarf aus informatischer, psychologischer, ethischer und rechtlicher Sicht NC Krämer Deutsche Nationalbibliothek, 2019 | 6 | 2019 |
Explaining reject options of learning vector quantization classifiers A Artelt, J Brinkrolf, R Visser, B Hammer arXiv preprint arXiv:2202.07244, 2022 | 5 | 2022 |
Unsupervised Unlearning of Concept Drift with Autoencoders A Artelt, K Malialis, CG Panayiotou, MM Polycarpou, B Hammer 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 703-710, 2023 | 4 | 2023 |