关注
Anton Raichuk
Anton Raichuk
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Google research football: A novel reinforcement learning environment
K Kurach, A Raichuk, P Stańczyk, M Zając, O Bachem, L Espeholt, ...
Proceedings of the AAAI conference on artificial intelligence 34 (04), 4501-4510, 2020
3602020
Episodic curiosity through reachability
N Savinov, A Raichuk, R Marinier, D Vincent, M Pollefeys, T Lillicrap, ...
arXiv preprint arXiv:1810.02274, 2018
3262018
Acme: A research framework for distributed reinforcement learning
MW Hoffman, B Shahriari, J Aslanides, G Barth-Maron, N Momchev, ...
arXiv preprint arXiv:2006.00979, 2020
2382020
What matters in on-policy reinforcement learning? a large-scale empirical study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
arXiv preprint arXiv:2006.05990, 2020
2102020
Brax--a differentiable physics engine for large scale rigid body simulation
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
arXiv preprint arXiv:2106.13281, 2021
2082021
What matters for on-policy deep actor-critic methods? a large-scale study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
International conference on learning representations, 2021
1632021
What matters for adversarial imitation learning?
M Orsini, A Raichuk, L Hussenot, D Vincent, R Dadashi, S Girgin, M Geist, ...
Advances in Neural Information Processing Systems 34, 14656-14668, 2021
652021
Brax-a differentiable physics engine for large scale rigid body simulation, 2021
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
URL http://github. com/google/brax 6, 2021
552021
What matters in on-policy reinforcement learning
M Andrychowicz, A Raichuk, P Stanczyk, M Orsini, S Girgin, R Marinier, ...
A large-scale empirical study. CoRR, abs/2006.05990 3, 2020
302020
Continuous control with action quantization from demonstrations
R Dadashi, L Hussenot, D Vincent, S Girgin, A Raichuk, M Geist, ...
arXiv preprint arXiv:2110.10149, 2021
252021
Hyperparameter selection for imitation learning
L Hussenot, M Andrychowicz, D Vincent, R Dadashi, A Raichuk, S Ramos, ...
International Conference on Machine Learning, 4511-4522, 2021
172021
Braxlines: Fast and interactive toolkit for rl-driven behavior engineering beyond reward maximization
SS Gu, M Diaz, DC Freeman, H Furuta, SKS Ghasemipour, A Raichuk, ...
arXiv preprint arXiv:2110.04686, 2021
122021
Agent-centric representations for multi-agent reinforcement learning
W Shang, L Espeholt, A Raichuk, T Salimans
arXiv preprint arXiv:2104.09402, 2021
122021
Sta nczyk
M Andrychowicz, A Raichuk
P, 0
10
Implicitly regularized rl with implicit q-values
N Vieillard, M Andrychowicz, A Raichuk, O Pietquin, M Geist
arXiv preprint arXiv:2108.07041, 2021
72021
vec2text with round-trip translations
G Cideron, S Girgin, A Raichuk, O Pietquin, O Bachem, L Hussenot
arXiv preprint arXiv:2209.06792, 2022
22022
State-dependent action space quantization
R Dadashi-Tazehozi, OC Pietquin, LH Desenonges, MF Geist, A Raichuk, ...
US Patent App. 17/947,985, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–17