关注
Sheng Ouyang
Sheng Ouyang
在 ruc.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Towards comprehensive preference data collection for reward modeling
Y Hu, Q Li, S Ouyang, G Chen, K Chen, L Mei, X Ye, F Zhang, Y Liu
arXiv preprint arXiv:2406.16486, 2024
22024
VIGraph: Self-supervised Learning for Class-Imbalanced Node Classification
Y Hu, S Ouyang, Z Yang, Y Liu
arXiv preprint arXiv:2311.01191, 2023
22023
HGCVAE: Integrating Generative and Contrastive Learning for Heterogeneous Graph Learning
Y Hu, Z Yang, S Ouyang, Y Liu
arXiv preprint arXiv:2310.11102, 2023
22023
Understanding the generalization performance of spectral clustering algorithms
S Li, S Ouyang, Y Liu
Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 8614-8621, 2023
22023
GUNDAM: Aligning Large Language Models with Graph Understanding
S Ouyang, Y Hu, G Chen, Y Liu
arXiv preprint arXiv:2409.20053, 2024
12024
WaveNet: Tackling Non-stationary Graph Signals via Graph Spectral Wavelets
Z Yang, Y Hu, S Ouyang, J Liu, S Wang, X Ma, W Wang, H Su, Y Liu
Proceedings of the AAAI Conference on Artificial Intelligence 38 (8), 9287-9295, 2024
12024
Exploring Task Unification in Graph Representation Learning via Generative Approach
Y Hu, S Ouyang, Z Yang, G Chen, J Wan, X Wang, Y Liu
arXiv preprint arXiv:2403.14340, 2024
12024
IdmGAE: Importance-Inspired Dynamic Masking for Graph Autoencoders
G Chen, Y Hu, S Ouyang, Z Yang, Y Liu, C Luo
Proceedings of the 47th International ACM SIGIR Conference on Research and …, 2024
2024
Advancing Latent Representation Ranking for Masked Graph Autoencoder
Y Hu, G Chen, S Ouyang, Z Yang, J Wan, F Zhang, Z Wang, Z Cao, S Wu, ...
International Conference on Database Systems for Advanced Applications, 385-394, 2024
2024
Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation
G Chen, Y Hu, S Ouyang, Y Liu, C Luo
arXiv preprint arXiv:2406.17517, 2024
2024
GFMAE: Self-Supervised GNN-Free Masked Autoencoders
Y Hu, S Ouyang, Z Yang, Y Zhao, J Wan, F Zhang, Z Wang, Y Liu
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and …, 2024
2024
Do We Really Need Contrastive Learning for Graph Representation?
Y Hu, S Ouyang, J Liu, G Chen, Z Yang, J Wan, F Zhang, Z Wang, Y Liu
arXiv preprint arXiv:2310.14525, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–12