关注
Meike Nauta
Meike Nauta
Datacation
没有经过验证的电子邮件地址
标题
引用次数
引用次数
年份
From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
M Nauta, J Trienes, S Pathak, E Nguyen, M Peters, Y Schmitt, ...
ACM Computing Surveys 55 (13s), 1-42, 2023
2542023
Neural prototype trees for interpretable fine-grained image recognition
M Nauta, R Van Bree, C Seifert
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
2302021
Causal discovery with attention-based convolutional neural networks
M Nauta, D Bucur, C Seifert
Machine Learning and Knowledge Extraction 1 (1), 19, 2019
2222019
This looks like that, because... explaining prototypes for interpretable image recognition
M Nauta, A Jutte, J Provoost, C Seifert
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2021
612021
Uncovering and correcting shortcut learning in machine learning models for skin cancer diagnosis
M Nauta, R Walsh, A Dubowski, C Seifert
Diagnostics 12 (1), 40, 2021
572021
Explainable AI in medical imaging: An overview for clinical practitioners–Beyond saliency-based XAI approaches
K Borys, YA Schmitt, M Nauta, C Seifert, N Krämer, CM Friedrich, F Nensa
European journal of radiology 162, 110786, 2023
422023
Pip-net: Patch-based intuitive prototypes for interpretable image classification
M Nauta, J Schlötterer, M Van Keulen, C Seifert
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
342023
Explainable ai in medical imaging: An overview for clinical practitioners–saliency-based xai approaches
K Borys, YA Schmitt, M Nauta, C Seifert, N Krämer, CM Friedrich, F Nensa
European journal of radiology 162, 110787, 2023
332023
LIFT: learning fault trees from observational data
M Nauta, D Bucur, M Stoelinga
Quantitative Evaluation of Systems: 15th International Conference, QEST 2018 …, 2018
302018
Detecting hacked twitter accounts based on behavioural change
M Nauta, MB Habib, M van Keulen
13th International Conference on Web Information Systems and Technologies …, 2017
22*2017
Benchmarking eXplainable AI-A Survey on Available Toolkits and Open Challenges.
PQ Le, M Nauta, SP Van Bach Nguyen, S Pathak, J Schlötterer, C Seifert
IJCAI, 6665-6673, 2023
82023
Interpreting and correcting medical image classification with pip-net
M Nauta, JH Hegeman, J Geerdink, J Schlötterer, M Keulen, C Seifert
European Conference on Artificial Intelligence, 198-215, 2023
72023
Radiology report generation for proximal femur fractures using deep classification and language generation models
O Paalvast, M Nauta, M Koelle, J Geerdink, O Vijlbrief, JH Hegeman, ...
Artificial intelligence in medicine 128, 102281, 2022
62022
Evaluating CNN interpretability on sketch classification
A Theodorus, M Nauta, C Seifert
Twelfth International Conference on Machine Vision (ICMV 2019) 11433, 475-482, 2020
62020
The co-12 recipe for evaluating interpretable part-prototype image classifiers
M Nauta, C Seifert
World Conference on Explainable Artificial Intelligence, 397-420, 2023
52023
Interactive explanations of internal representations of neural network layers: An exploratory study on outcome prediction of comatose patients
M Nauta, MJAM van Putten, MC Tjepkema-Cloostermans, JP Bos, ...
5th International Workshop on Knowledge Discovery in Healthcare Data, KDH …, 2020
52020
Visualising the training process of convolutional neural networks for non-experts
M Peters, L Kempen, M Nauta, C Seifert
31st Benelux Conference on Artificial Intelligence, BNAIC 2019, 2019
32019
Explainable ai and interpretable computer vision: From oversight to insight
M Nauta
22023
Worst‐Case Morphs Using Wasserstein ALI and Improved MIPGAN
UM Kelly, M Nauta, L Liu, LJ Spreeuwers, RNJ Veldhuis
IET biometrics 2023 (1), 9353816, 2023
12023
PIPNet3D: Interpretable Detection of Alzheimer in MRI Scans
LA De Santi, J Schlötterer, M Scheschenja, J Wessendorf, M Nauta, ...
arXiv preprint arXiv:2403.18328, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20