关注
Luyao Liu
Luyao Liu
Postdoc of CEEC Guangdong Electric Design Institute and Tsinghua University
在 mail.sdu.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Power generation efficiency and prospects of floating photovoltaic systems
L Liu, Q Wang, H Lin, H Li, Q Sun
Energy Procedia 105, 1136-1142, 2017
2712017
Prediction of short-term PV power output and uncertainty analysis
L Liu, Y Zhao, D Chang, J Xie, Z Ma, Q Sun, H Yin, R Wennersten
Applied energy 228, 700-711, 2018
2682018
Evaluating the benefits of integrating floating photovoltaic and pumped storage power system
L Liu, Q Sun, H Li, H Yin, X Ren, R Wennersten
Energy Conversion and Management 194, 173-185, 2019
1202019
Forecasting power output of photovoltaic system using a BP network method
L Liu, D Liu, Q Sun, H Li, R Wennersten
Energy Procedia 142, 780-786, 2017
1192017
Prediction of photovoltaic power generation based on general regression and back propagation neural network
J Zhong, L Liu, Q Sun, X Wang
Energy Procedia 152, 1224-1229, 2018
702018
Peak shaving and valley filling potential of energy management system in high-rise residential building
Y Wang, L Liu, R Wennersten, Q Sun
Energy Procedia 158, 6201-6207, 2019
342019
Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model
L Liu, F Bai, C Su, C Ma, R Yan, H Li, Q Sun, R Wennersten
Energy 247, 123417, 2022
322022
Research on short-term optimization for integrated hydro-PV power system based on genetic algorithm
L Liu, Q Sun, Y Wang, Y Liu, R Wennersten
Energy Procedia 152, 1097-1102, 2018
262018
High-rise building peak load shaving using rooftop attached PV
Y Wang, H Lin, L Liu, R Wennersten, Q Sun
Energy Procedia 152, 484-489, 2018
142018
A weight-varying ensemble method for short-term forecasting PV power output
L Liu, Y Zhao, Y Wang, Q Sun, R Wennersten
Energy Procedia 158, 661-668, 2019
132019
Energy Procedia
L Liu, Q Wang, H Lin, H Li, Q Sun, R Wennersten
Elsevier BV, 2017
112017
Prediction of short-term output of photovoltaic system based on generalized regression neural network
L Liu, Y Zhao, Q Sun, R Wennersten
2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 1-6, 2017
72017
Day-ahead Forecast of Photovoltaic Power Based on A Novel Stacking Ensemble Method
L Liu, Q Sun, R Wennersten, Z Chen
IEEE Access, 2023
52023
Optimal Energy Management of Data Center Micro-Grid Considering Computing Workloads Shift
L Liu, X Shen, Z Chen, Q Sun, R Wennersten
IEEE Access, 2024
12024
Corrigendum to ‘‘Evaluating the benefits of Integrating Floating Photovoltaic and Pumped Storage Power System’’[Energy Convers. Manag. 194 (2019) 173–185]
L Liu, Q Sun, H Li, H Yin, X Ren, R Wennersten
Energy Conversion and Management 312, 118526, 2024
12024
Characterizing the Volatility of Wholesale Electricity Spot Prices in Australia
L Liu, Q Sun, H Li, Q Huang, R Wennersten
DEStech Transactions on Environment, Energy and Earth Sciences, 2019
12019
Evaluating the benefits of Integrating Floating Photovoltaic and Pumped Storage Power System (vol 194, pg 173, 2019)
L Liu, Q Sun, H Li, H Yin, X Ren, R Wennersten
Energy Conversion and Management 312, 2024
2024
DUAL-STAGE OPTIMAL SCHEDULING FOR A GRID-CONNECTED MICROGRID
L Liu, C Su, Q Sun, Q Huang, R Wennersten
2021
系统目前无法执行此操作,请稍后再试。
文章 1–18