Bezier variant of the Bernstein–Durrmeyer type operators T Acar, PN Agrawal, T Neer Results in Mathematics 72, 1341-1358, 2017 | 28 | 2017 |
Bézier variant of genuine-Durrmeyer type operators based on Pólya distribution T Neer, AM Acu, PN Agrawal Carpathian Journal of Mathematics 33 (1), 73-86, 2017 | 28 | 2017 |
Approximation properties of the modified Stancu operators AM Acu, PN Agrawal, T Neer Numerical Functional Analysis and Optimization 38 (3), 279-292, 2017 | 20 | 2017 |
Stancu-Durrmeyer type operators based on q-integers T Neer, PN Agrawal, S Araci Appl. Math. Inf. Sci 11 (3), 767-775, 2017 | 14 | 2017 |
A genuine family of Bernstein-Durrmeyer type operators based on Pólya basis functions T Neer, PN Agrawal Filomat 31 (9), 2611-2623, 2017 | 13 | 2017 |
Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials T Neer, PN Agrawal Journal of inequalities and applications 2017, 1-20, 2017 | 12 | 2017 |
Bezier variant of modified Srivastava-Gupta operators T Neer, N Ispir, PN Agrawal Revista de la Unión Matemática Argentina, 2017 | 11 | 2017 |
Baskakov‐Durrmeyer type operators involving generalized Appell Polynomials T Neer, AM Acu, PN Agrawal Mathematical Methods in the Applied Sciences 43 (6), 2911-2923, 2020 | 8 | 2020 |
Approximation of functions by bivariate q-Stancu-Durrmeyer type operators T Neer, AM Acu, P Agrawal Mathematical Communications 23 (2), 161-180, 2018 | 6 | 2018 |
Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators T Neer, AM Acu, PN Agrawal Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie …, 2019 | 4 | 2019 |