关注
Zhengang Li
Zhengang Li
在 husky.neu.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Non-structured DNN weight pruning—Is it beneficial in any platform?
X Ma, S Lin, S Ye, Z He, L Zhang, G Yuan, SH Tan, Z Li, D Fan, X Qian, ...
IEEE transactions on neural networks and learning systems 33 (9), 4930-4944, 2021
962021
Mest: Accurate and fast memory-economic sparse training framework on the edge
G Yuan, X Ma, W Niu, Z Li, Z Kong, N Liu, Y Gong, Z Zhan, C He, Q Jin, ...
Advances in Neural Information Processing Systems 34, 20838-20850, 2021
792021
Forms: Fine-grained polarized reram-based in-situ computation for mixed-signal dnn accelerator
G Yuan, P Behnam, Z Li, A Shafiee, S Lin, X Ma, H Liu, X Qian, ...
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture …, 2021
632021
Rtmobile: Beyond real-time mobile acceleration of rnns for speech recognition
P Dong, S Wang, W Niu, C Zhang, S Lin, Z Li, Y Gong, B Ren, X Lin, ...
2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020
562020
Progressive dnn compression: A key to achieve ultra-high weight pruning and quantization rates using admm
S Ye, X Feng, T Zhang, X Ma, S Lin, Z Li, K Xu, W Wen, S Liu, J Tang, ...
arXiv preprint arXiv:1903.09769, 2019
542019
Film-qnn: Efficient fpga acceleration of deep neural networks with intra-layer, mixed-precision quantization
M Sun, Z Li, A Lu, Y Li, SE Chang, X Ma, X Lin, Z Fang
Proceedings of the 2022 ACM/SIGDA International Symposium on Field …, 2022
482022
Resnet can be pruned 60×: Introducing network purification and unused path removal (p-rm) after weight pruning
X Ma, G Yuan, S Lin, Z Li, H Sun, Y Wang
2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 1-2, 2019
412019
Structadmm: Achieving ultrahigh efficiency in structured pruning for dnns
T Zhang, S Ye, X Feng, X Ma, K Zhang, Z Li, J Tang, S Liu, X Lin, Y Liu, ...
IEEE transactions on neural networks and learning systems 33 (5), 2259-2273, 2021
362021
Auto-vit-acc: An fpga-aware automatic acceleration framework for vision transformer with mixed-scheme quantization
Z Li, M Sun, A Lu, H Ma, G Yuan, Y Xie, H Tang, Y Li, M Leeser, Z Wang, ...
2022 32nd International Conference on Field-Programmable Logic and …, 2022
352022
F8net: Fixed-point 8-bit only multiplication for network quantization
Q Jin, J Ren, R Zhuang, S Hanumante, Z Li, Z Chen, Y Wang, K Yang, ...
arXiv preprint arXiv:2202.05239, 2022
332022
Improving dnn fault tolerance using weight pruning and differential crossbar mapping for reram-based edge ai
G Yuan, Z Liao, X Ma, Y Cai, Z Kong, X Shen, J Fu, Z Li, C Zhang, H Peng, ...
2021 22nd International Symposium on Quality Electronic Design (ISQED), 135-141, 2021
322021
Efficient transformer-based large scale language representations using hardware-friendly block structured pruning
B Li, Z Kong, T Zhang, J Li, Z Li, H Liu, C Ding
arXiv preprint arXiv:2009.08065, 2020
322020
Tinyadc: Peripheral circuit-aware weight pruning framework for mixed-signal dnn accelerators
G Yuan, P Behnam, Y Cai, A Shafiee, J Fu, Z Liao, Z Li, X Ma, J Deng, ...
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 926-931, 2021
272021
Npas: A compiler-aware framework of unified network pruning and architecture search for beyond real-time mobile acceleration
Z Li, G Yuan, W Niu, P Zhao, Y Li, Y Cai, X Shen, Z Zhan, Z Kong, Q Jin, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
272021
A privacy-preserving-oriented dnn pruning and mobile acceleration framework
Y Gong, Z Zhan, Z Li, W Niu, X Ma, W Wang, B Ren, C Ding, X Lin, X Xu, ...
Proceedings of the 2020 on Great Lakes Symposium on VLSI, 119-124, 2020
232020
Heatvit: Hardware-efficient adaptive token pruning for vision transformers
P Dong, M Sun, A Lu, Y Xie, K Liu, Z Kong, X Meng, Z Li, X Lin, Z Fang, ...
2023 IEEE International Symposium on High-Performance Computer Architecture …, 2023
182023
Grim: A general, real-time deep learning inference framework for mobile devices based on fine-grained structured weight sparsity
W Niu, Z Li, X Ma, P Dong, G Zhou, X Qian, X Lin, Y Wang, B Ren
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (10), 6224 …, 2021
182021
SS-Auto: A single-shot, automatic structured weight pruning framework of DNNs with ultra-high efficiency
Z Li, Y Gong, X Ma, S Liu, M Sun, Z Zhan, Z Kong, G Yuan, Y Wang
arXiv preprint arXiv:2001.08839, 2020
182020
Non-structured dnn weight pruning considered harmful
Y Wang, S Ye, Z He, X Ma, L Zhang, S Lin, G Yuan, SH Tan, Z Li, D Fan, ...
arXiv preprint arXiv:1907.02124 2, 2019
142019
Blk-rew: A unified block-based dnn pruning framework using reweighted regularization method
X Ma, Z Li, Y Gong, T Zhang, W Niu, Z Zhan, P Zhao, J Tang, X Lin, B Ren, ...
arXiv preprint arXiv:2001.08357, 2020
132020
系统目前无法执行此操作,请稍后再试。
文章 1–20