关注
Qinghao Hu
Qinghao Hu
在 ntu.edu.sg 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters
Q Hu, P Sun, S Yan, Y Wen, T Zhang
Proceedings of the International Conference for High Performance Computing …, 2021
982021
Deep learning workload scheduling in gpu datacenters: Taxonomy, challenges and vision
W Gao, Q Hu, Z Ye, P Sun, X Wang, Y Luo, T Zhang, Y Wen
arXiv preprint arXiv:2205.11913, 2022
242022
Lucid: A non-intrusive, scalable and interpretable scheduler for deep learning training jobs
Q Hu, M Zhang, P Sun, Y Wen, T Zhang
Proceedings of the 28th ACM International Conference on Architectural …, 2023
122023
Characterization of large language model development in the datacenter
Q Hu, Z Ye, Z Wang, G Wang, M Zhang, Q Chen, P Sun, D Lin, X Wang, ...
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI …, 2024
112024
Boosting distributed full-graph gnn training with asynchronous one-bit communication
M Zhang, Q Hu, P Sun, Y Wen, T Zhang
arXiv preprint arXiv:2303.01277, 2023
62023
Deep learning workload scheduling in gpu datacenters: A survey
Z Ye, W Gao, Q Hu, P Sun, X Wang, Y Luo, T Zhang, Y Wen
ACM Computing Surveys 56 (6), 1-38, 2024
42024
Hydro:{Surrogate-Based} Hyperparameter Tuning Service in Datacenters
Q Hu, Z Ye, M Zhang, Q Chen, P Sun, Y Wen, T Zhang
17th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2023
42023
Primo: Practical Learning-Augmented Systems with Interpretable Models
Q Hu, H Nori, P Sun, Y Wen, T Zhang
2022 USENIX Annual Technical Conference (USENIX ATC 22), 519-538, 2022
42022
Internevo: Efficient long-sequence large language model training via hybrid parallelism and redundant sharding
Q Chen, D Gu, G Wang, X Chen, YT Xiong, T Huang, Q Hu, X Jin, Y Wen, ...
arXiv preprint arXiv:2401.09149, 2024
32024
FedDSE: Distribution-aware Sub-model Extraction for Federated Learning over Resource-constrained Devices
H Wang, Y Jia, M Zhang, Q Hu, H Ren, P Sun, Y Wen, T Zhang
Proceedings of the ACM on Web Conference 2024, 2902-2913, 2024
2024
AMSP: Super-Scaling LLM Training via Advanced Model States Partitioning
Q Chen, Q Hu, Z Ye, G Wang, P Sun, Y Wen, T Zhang
arXiv preprint arXiv:2311.00257, 2023
2023
Building efficient and practical machine learning systems
Q Hu
Nanyang Technological University, 2023
2023
Understanding the Workload Characteristics of Large Language Model Development
Q Hu, P Sun, T Zhang
系统目前无法执行此操作,请稍后再试。
文章 1–13