On the Diophantine Equation IN Cangül, M Demirci, G Soydan, N Tzanakis arXiv preprint arXiv:1001.2525, 2010 | 43 | 2010 |
On the diophantine equation x 2+ 2a· 3b· 11c= y n İ Cangül, M Demırcı, I Inam, F Luca, G Soydan Mathematica Slovaca 63 (3), 647-659, 2013 | 33 | 2013 |
On the Diophantine equation G Soydan arXiv preprint arXiv:1701.02466, 2017 | 24 | 2017 |
RATIONAL POINTS ON ELLIPTIC CURVES y² = x³ + a³ IN F p WHERE p = 1 (mod 6) IS PRIME M Demirci, G Soydan, IN Cangul The Rocky Mountain Journal of Mathematics, 1483-1491, 2007 | 13 | 2007 |
Complete solution of the Diophantine equation x2+ 5a11b= yn G Soydan, N Tzanakis Bull. of the Hellenic Math. Soc 60, 125-151, 2016 | 11 | 2016 |
The Diophantine Equation Revisited D Bartoli, G Soydan arXiv preprint arXiv:1909.06100, 2019 | 9 | 2019 |
On the Diophantine equation x^ 2+ 7^{alpha}. 11^{beta}= y^ n G Soydan arXiv preprint arXiv:1201.0778, 2012 | 9 | 2012 |
A p-adic look at the Diophantine equation x^{2}+ 11^{2k}= y^{n} IN Cangul, G Soydan, Y Simsek arXiv preprint arXiv:1112.5984, 2011 | 7 | 2011 |
Elliptic curves containing sequences of consecutive cubes GS Celik, G Soydan | 6 | 2018 |
Corrigendum on I Inam, G Soydan, M Demirci, O BiZim, İ CANGÜL Communications of the Korean Mathematical Society 22 (2), 2007 | 5 | 2007 |
Rational points on the elliptic curves y2= x3+ a3 (mod p) in Fp where p≡ 5 (mod6) is prime G Soydan, M Demirci, NY Ikikardes, IN Cangül International Journal of Mathematics Sciences 1 (4), 247-250, 2007 | 5 | 2007 |
The Diophantine Equation x^{2}+ 11^{m}= y^{n} G Soydan, M Demirci, IN Cangul arXiv preprint arXiv:1112.5986, 2011 | 4 | 2011 |
On the power values of the sum of three squares in arithmetic progression M Le, G Soydan Mathematical Communications 27 (2), 137-150, 2022 | 2 | 2022 |
A note on two Diophantine equations x^ 2 pm 2^ a* p^ b= y^ 4 H Zhu, G Soydan, W Qin Miskolc Mathematical Notes 14 (3), 1105-1111, 2013 | 2 | 2013 |
Classification of the Bachet Elliptic Curves y2= x3+ a3 in Fp, where p≡ 1 (mod 6) is Prime NY Ikikardes, G Soydan, M Demirci, IN Cangul International Journal of Mathematical and Computational Sciences 1 (1), 123-125, 2007 | 2 | 2007 |
On the solutions of some Lebesgue-Ramanujan-Nagell type equations E Mutlu, G Soydan International Journal of Number Theory, 2024 | | 2024 |
A note on the diophantine equation x2= 4pn-4pm+ l2 FS Abu Muriefah, M Le Indian Nat Sci Acad, 2021 | | 2021 |
The shuffle variant of a Diophantine equation of Miyazaki and Togbe E Kizildere, G Soydan, Q Han, P Yuan | | 2021 |
Elliptic curves containing sequences of consecutive cubes G SOYDAN, GS CELIK BOOK OF ABSTRACTS, 123, 2018 | | 2018 |
On the Diophantine equation (&ITx&IT+ 1) &ITk&IT+(&ITx&IT+ 2) &ITk&IT+...+(2&ITx&IT) &ITk&IT= &ITy (n) &IT A Berczes, I Pink, G Savas, G Soydan | | 2018 |