关注
Elias Frantar
Elias Frantar
PhD Candidate, IST Austria
在 ist.ac.at 的电子邮件经过验证
标题
引用次数
引用次数
年份
GPTQ: Accurate post-training compression for generative pretrained transformers
E Frantar, S Ashkboos, T Hoefler, D Alistarh
arXiv preprint arXiv:2210.17323 1, 2022
603*2022
Sparsegpt: Massive language models can be accurately pruned in one-shot
E Frantar, D Alistarh
International Conference on Machine Learning, 10323-10337, 2023
3062023
Optimal brain compression: A framework for accurate post-training quantization and pruning
E Frantar, D Alistarh
Advances in Neural Information Processing Systems 35, 4475-4488, 2022
1372022
Spqr: A sparse-quantized representation for near-lossless llm weight compression
T Dettmers, R Svirschevski, V Egiazarian, D Kuznedelev, E Frantar, ...
arXiv preprint arXiv:2306.03078, 2023
1112023
The optimal bert surgeon: Scalable and accurate second-order pruning for large language models
E Kurtic, D Campos, T Nguyen, E Frantar, M Kurtz, B Fineran, M Goin, ...
arXiv preprint arXiv:2203.07259, 2022
962022
M-fac: Efficient matrix-free approximations of second-order information
E Frantar, E Kurtic, D Alistarh
Advances in Neural Information Processing Systems 34, 14873-14886, 2021
482021
SPDY: Accurate pruning with speedup guarantees
E Frantar, D Alistarh
International Conference on Machine Learning, 6726-6743, 2022
282022
Ziplm: Hardware-aware structured pruning of language models
E Kurtic, E Frantar, D Alistarh
arXiv preprint arXiv:2302.04089 3 (7), 2023
27*2023
On the sample complexity of adversarial multi-source pac learning
N Konstantinov, E Frantar, D Alistarh, C Lampert
International Conference on Machine Learning, 5416-5425, 2020
252020
Extreme compression of large language models via additive quantization
V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh
arXiv preprint arXiv:2401.06118, 2024
182024
QMoE: Sub-1-Bit Compression of Trillion Parameter Models
E Frantar, D Alistarh
Proceedings of Machine Learning and Systems 6, 439-451, 2024
15*2024
Towards end-to-end 4-bit inference on generative large language models
S Ashkboos, I Markov, E Frantar, T Zhong, X Wang, J Ren, T Hoefler, ...
arXiv preprint arXiv:2310.09259, 2023
142023
Scaling laws for sparsely-connected foundation models
E Frantar, C Riquelme, N Houlsby, D Alistarh, U Evci
arXiv preprint arXiv:2309.08520, 2023
102023
Sparse finetuning for inference acceleration of large language models
E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh
arXiv preprint arXiv:2310.06927, 2023
92023
Cap: Correlation-aware pruning for highly-accurate sparse vision models
D Kuznedelev, E Kurtić, E Frantar, D Alistarh
Advances in Neural Information Processing Systems 36, 2024
6*2024
Marlin: a fast 4-bit inference kernel for medium batchsizes
E Frantar, D Alistarh
62024
L-GreCo: Layerwise-adaptive Gradient Compression For Efficient Data-parallel Deep Learning
I Markov, K Alim, E Frantar, D Alistarh
Proceedings of Machine Learning and Systems 6, 312-324, 2024
5*2024
Accurate neural network pruning requires rethinking sparse optimization
D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh
arXiv preprint arXiv:2308.02060, 2023
42023
JaxPruner: A concise library for sparsity research
JH Lee, W Park, NE Mitchell, J Pilault, JSO Ceron, HB Kim, N Lee, ...
Conference on Parsimony and Learning, 515-528, 2024
32024
QIGen: Generating Efficient Kernels for Quantized Inference on Large Language Models
T Pegolotti, E Frantar, D Alistarh, M Püschel
arXiv preprint arXiv:2307.03738, 2023
3*2023
系统目前无法执行此操作,请稍后再试。
文章 1–20