关注
Yusuke Toda
Yusuke Toda
Institute for Agro-Environmental Sciences (NIAES), NARO, Japan
在 affrc.go.jp 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models
Y Toda, H Wakatsuki, T Aoike, H Kajiya-Kanegae, M Yamasaki, ...
PLoS One 15 (6), e0233951, 2020
182020
Genomic prediction modeling of soybean biomass using UAV‐based remote sensing and longitudinal model parameters
Y Toda, A Kaga, H Kajiya‐Kanegae, T Hattori, S Yamaoka, M Okamoto, ...
The Plant Genome 14 (3), e20157, 2021
152021
Time‐series multispectral imaging in soybean for improving biomass and genomic prediction accuracy
K Sakurai, Y Toda, H Kajiya‐Kanegae, Y Ohmori, Y Yamasaki, ...
The Plant Genome 15 (4), e20244, 2022
82022
Genomic prediction of green fraction dynamics in soybean using unmanned aerial vehicles observations
Y Toda, G Sasaki, Y Ohmori, Y Yamasaki, H Takahashi, H Takanashi, ...
Frontiers in Plant Science 13, 828864, 2022
8*2022
Stage-specific characterization of physiological response to heat stress in the wheat cultivar Norin 61
S Matsunaga, Y Yamasaki, Y Toda, R Mega, K Akashi, H Tsujimoto
International Journal of Molecular Sciences 22 (13), 6942, 2021
82021
High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling
K Kumaishi, E Usui, K Suzuki, S Kobori, T Sato, Y Toda, H Takanashi, ...
Scientific Reports 12 (1), 19289, 2022
7*2022
Effects of irrigation on root growth and development of soybean: A 3-year sandy field experiment
KT Bui, T Naruse, H Yoshida, Y Toda, Y Omori, M Tsuda, A Kaga, ...
Frontiers in Plant Science 13, 1047563, 2022
52022
Metabolome profiling of heat priming effects, senescence, and acclimation of bread wheat induced by high temperatures at different growth stages
S Matsunaga, Y Yamasaki, R Mega, Y Toda, K Akashi, H Tsujimoto
International Journal of Molecular Sciences 22 (23), 13139, 2021
42021
Stochastic variational variable selection for high-dimensional microbiome data
T Dang, K Kumaishi, E Usui, S Kobori, T Sato, Y Toda, Y Yamasaki, ...
Microbiome 10 (1), 236, 2022
32022
Random regression for modeling soybean plant response to irrigation changes using time-series multispectral data
K Sakurai, Y Toda, K Hamazaki, Y Ohmori, Y Yamasaki, H Takahashi, ...
Frontiers in Plant Science 14, 1201806, 2023
22023
High-Throughput Phenotyping of Soybean Biomass: Conventional Trait Estimation and Novel Latent Feature Extraction Using UAV Remote Sensing and Deep Learning Models
M Okada, C Barras, Y Toda, K Hamazaki, Y Ohmori, Y Yamasaki, ...
Plant Phenomics 6, 0244, 2024
2024
Modeling soybean growth: A mixed model approach
M Delattre, Y Toda, J Tressou, H Iwata
PLOS Computational Biology 20 (7), e1011258, 2024
2024
Reaction norm for genomic prediction of plant growth: modeling drought stress response in soybean
Y Toda, G Sasaki, Y Ohmori, Y Yamasaki, H Takahashi, H Takanashi, ...
Theoretical and Applied Genetics 137 (4), 77, 2024
2024
Revealing the spatial characteristics of rice heat exposure in Japan through panicle temperature analysis
Y Toda, Y Ishigooka, M Yoshimoto, T Takimoto, T Kuwagata, D Makowski, ...
Journal of Agricultural Meteorology 80 (3), 79-89, 2024
2024
An integrative framework of stochastic variational variable selection for joint analysis of multi-omics microbiome data
T Dang, Y Fuji, K Kumaishi, E Usui, S Kobori, T Sato, Y Toda, K Sakurai, ...
bioRxiv, 2023.08. 18.553796, 2023
2023
Multi-Omics Integration for Modeling Drought Stress Response in Soybean
H Iwata, Y Toda, Y Yamasaki, K Uchida, Y Ohmori, H Takahashi, M Tsuda, ...
ASA, CSSA and SSSA International Annual Meetings (2019), 2019
2019
Using Multi-Omics Intermediate Traits in Genome Selection: Predictive Modeling and Visualization Methods
H Iwata, Y Toda, Y Fuji, Y Ohmori, Y Yamasaki, H Takahashi, ...
Plant and Animal Genome XXIX Conference (January 8-12, 2022), 0
系统目前无法执行此操作,请稍后再试。
文章 1–17