关注
Frederik Kratzert
Frederik Kratzert
Research Scientist @ Google
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Rainfall-runoff modelling using long short-term memory (lstm) networks
F Kratzert, D Klotz, C Brenner, K Schulz, M Herrnegger
Hydrol. Earth Syst. Sci. 22, 6005-6022, 2018
10802018
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
F Kratzert, D Klotz, G Shalev, G Klambauer, S Hochreiter, G Nearing
Hydrology and Earth System Sciences 23 (12), 5089-5110, 2019
531*2019
Toward improved predictions in ungauged basins: Exploiting the power of machine learning
F Kratzert, D Klotz, M Herrnegger, AK Sampson, S Hochreiter, GS Nearing
Water Resources Research 55 (12), 11344-11354, 2019
4282019
What role does hydrological science play in the age of machine learning?
GS Nearing, F Kratzert, AK Sampson, CS Pelissier, D Klotz, JM Frame, ...
Water Resources Research 57 (3), e2020WR028091, 2021
3382021
Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network
M Gauch, F Kratzert, D Klotz, G Nearing, J Lin, S Hochreiter
Hydrology and Earth System Sciences 25 (4), 2045-2062, 2021
1562021
Deep learning rainfall-runoff predictions of extreme events
J Frame, F Kratzert, D Klotz, M Gauch, G Shelev, O Gilon, LM Qualls, ...
Copernicus GmbH, 2021
1212021
NeuralHydrology–interpreting LSTMs in hydrology
F Kratzert, M Herrnegger, D Klotz, S Hochreiter, G Klambauer
Explainable AI: Interpreting, explaining and visualizing deep learning, 347-362, 2019
1102019
Post‐processing the national water model with long short‐term memory networks for streamflow predictions and model diagnostics
JM Frame, F Kratzert, A Raney, M Rahman, FR Salas, GS Nearing
JAWRA Journal of the American Water Resources Association 57 (6), 885-905, 2021
108*2021
Uncertainty estimation with deep learning for rainfall–runoff modeling
D Klotz, F Kratzert, M Gauch, A Keefe Sampson, J Brandstetter, ...
Hydrology and Earth System Sciences 26 (6), 1673-1693, 2022
992022
Flood forecasting with machine learning models in an operational framework
S Nevo, E Morin, A Gerzi Rosenthal, A Metzger, C Barshai, D Weitzner, ...
Hydrology and Earth System Sciences 26 (15), 4013-4032, 2022
972022
Hydrological concept formation inside long short-term memory (LSTM) networks
T Lees, S Reece, F Kratzert, D Klotz, M Gauch, J De Bruijn, R Kumar Sahu, ...
Hydrology and Earth System Sciences Discussions 2021, 1-37, 2021
832021
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
F Kratzert, D Klotz, S Hochreiter, GS Nearing
Hydrology and Earth System Sciences 25 (5), 2685-2703, 2021
742021
Mc-lstm: Mass-conserving lstm
PJ Hoedt, F Kratzert, D Klotz, C Halmich, M Holzleitner, GS Nearing, ...
International conference on machine learning, 4275-4286, 2021
702021
Caravan-A global community dataset for large-sample hydrology
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
Scientific Data 10 (1), 61, 2023
522023
The great lakes runoff intercomparison project phase 4: the great lakes (GRIP-GL)
J Mai, H Shen, BA Tolson, É Gaborit, R Arsenault, JR Craig, V Fortin, ...
Hydrology and Earth System Sciences 26 (13), 3537-3572, 2022
472022
NeuralHydrology---A Python library for Deep Learning research in hydrology
F Kratzert, M Gauch, G Nearing, D Klotz
Journal of Open Source Software 7 (71), 4050, 2022
392022
Hydronets: Leveraging river structure for hydrologic modeling
Z Moshe, A Metzger, G Elidan, F Kratzert, S Nevo, R El-Yaniv
arXiv preprint arXiv:2007.00595, 2020
382020
Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
GS Nearing, D Klotz, AK Sampson, F Kratzert, M Gauch, JM Frame, ...
Hydrology and earth system sciences discussions 2021, 1-25, 2021
302021
On strictly enforced mass conservation constraints for modelling the rainfall‐runoff process
JM Frame, F Kratzert, HV Gupta, P Ullrich, GS Nearing
Hydrological Processes 37 (3), e14847, 2023
232023
Fish species classification in underwater video monitoring using Convolutional Neural Networks
F Kratzert, H Mader
EarthArXiv, 2018
222018
系统目前无法执行此操作,请稍后再试。
文章 1–20